最短路径算法(dijkstra算法)

今天给各位分享最短路径算法的知识,其中也会对dijkstra算法进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、最短路径算法 2、...

今天给各位分享最短路径算法的知识,其中也会对dijkstra算法进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

最短路径算法

最短路径的算法主要有三种:floyd算法、Dijkstra算法、Bellman-Ford(贝尔曼-福特)

一、floyd算法

基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B。所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,我们便设置Dis(AB) = Dis(AX) + Dis(XB),这样一来,当我们遍历完所有节点X,Dis(AB)中记录的便是A到B的最短路径的距离。

二、Dijkstra算法

算法步骤:

a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则u,v正常有权值,若u不是v的出边邻接点,则u,v权值为∞。

b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

执行过程如图所示:

三、Bellman-Ford(贝尔曼-福特)

算法的流程如下:

给定图G(V, E)(其中V、E分别为图G的顶点集与边集),源点s,

1.数组Distant[i]记录从源点s到顶点i的路径长度,初始化数组Distant[n]为, Distant[s]为0;

2.以下操作循环执行至多n-1次,n为顶点数: 

对于每一条边e(u, v),如果Distant[u] + w(u, v) Distant[v],则另Distant[v] = Distant[u]+w(u, v)。w(u, v)为边e(u,v)的权值; 

若上述操作没有对Distant进行更新,说明最短路径已经查找完毕,或者部分点不可达,跳出循环。否则执行下次循环;

3.为了检测图中是否存在负环路,即权值之和小于0的环路。对于每一条边e(u, v),如果存在Distant[u] + w(u, v) Distant[v]的边,则图中存在负环路,即是说该图无法求出单源最短路径。否则数组Distant[n]中记录的就是源点s到各顶点的最短路径长度。

可知,Bellman-Ford算法寻找单源最短路径的时间复杂度为O(V*E).

最短路径 - Dijkstra算法

算法每次都查找距离起始点最近的点,那么剩下的点距离起始点的距离一定比当前点大。

1.选定A节点并初始化,如上述步骤3所示

2.执行上述 4、5两步骤,找出U集合中路径最短的节点D 加入S集合,并根据条件 if ( 'D 到 B,C,E 的距离' + 'AD 距离' 'A 到 B,C,E 的距离' ) 来更新U集合

3.这时候 A-B, A-C 都为3,没关系。其实这时候他俩都是最短距离,如果从算法逻辑来讲的话,会先取到B点。而这个时候 if 条件变成了 if ( 'B 到 C,E 的距离' + 'AB 距离' 'A 到 C,E 的距离' ) ,如图所示这时候A-B距离 其实为 A-D-B

思路就是这样,往后就是大同小异了

算法结束

(图片来源于网络)

Dijkstra算法保证能找到一条从初始点到目标点的最短路径,只要所有的边都有一个非负的代价值。在上图中,粉红色的结点是初始结点,蓝色的是目标点,而类菱形的有色区域则是Dijkstra算法扫描过的区域。颜色最淡的区域是那些离初始点最远的,因而形成探测过程(exploration)的边境(frontier)。因而Dijkstra算法可以找到一条最短的路径,但是效率上并不高。

数据结构--Dijkstra算法最清楚的讲解

图遍历算法之最短路径Dijkstra算法

最短路径问题是图论研究中一个经典算法问题,旨在寻找图中两节点或单个节点到其他节点之间的最短路径。根据问题的不同,算法的具体形式包括:

常用的最短路径算法包括:Dijkstra算法,A 算法,Bellman-Ford算法,SPFA算法(Bellman-Ford算法的改进版本),Floyd-Warshall算法,Johnson算法以及Bi-direction BFS算法。本文将重点介绍Dijkstra算法的原理以及实现。

Dijkstra算法,翻译作戴克斯特拉算法或迪杰斯特拉算法,于1956年由荷兰计算机科学家艾兹赫尔.戴克斯特拉提出,用于解决赋权有向图的 单源最短路径问题 。所谓单源最短路径问题是指确定起点,寻找该节点到图中任意节点的最短路径,算法可用于寻找两个城市中的最短路径或是解决著名的旅行商问题。

问题描述 :在无向图 中, 为图节点的集合, 为节点之间连线边的集合。假设每条边 的权重为 ,找到由顶点 到其余各个节点的最短路径(单源最短路径)。

为带权无向图,图中顶点 分为两组,第一组为已求出最短路径的顶点集合(用 表示)。初始时 只有源点,当求得一条最短路径时,便将新增顶点添加进 ,直到所有顶点加入 中,算法结束。第二组为未确定最短路径顶点集合(用 表示),随着 中顶点增加, 中顶点逐渐减少。

以下图为例,对Dijkstra算法的工作流程进行演示(以顶点 为起点):

注:

01) 是已计算出最短路径的顶点集合;

02) 是未计算出最短路径的顶点集合;

03) 表示顶点 到顶点 的最短距离为3

第1步 :选取顶点 添加进

第2步 :选取顶点 添加进 ,更新 中顶点最短距离

第3步 :选取顶点 添加进 ,更新 中顶点最短距离

第4步 :选取顶点 添加进 ,更新 中顶点最短距离

第5步 :选取顶点 添加进 ,更新 中顶点最短距离

第6步 :选取顶点 添加进 ,更新 中顶点最短距离

第7步 :选取顶点 添加进 ,更新 中顶点最短距离

示例:node编号1-7分别代表A,B,C,D,E,F,G

(s.paths - shortest.paths(g, algorithm = "dijkstra"))输出结果:

(s.paths - shortest.paths(g,4, algorithm = "dijkstra"))输出结果:

示例:

找到D(4)到G(7)的最短路径:

[1] 维基百科,最短路径问题: ;

[2]CSDN,Dijkstra算法原理: ;

[3]RDocumentation: ;

[4]RDocumentation: ;

[5]Pypi:

图论中常见的最短路径算法有几种?都是什么

主要是有三种、、

第一种是最直接的贪心dijkstra算法、、可以利用堆数据结构进行优化、、缺点就是不能求有负权的最短路与判断负环、、

第二种是bellman-ford算法、、根据松弛操作的性质是可以来判断负环的、、时间复杂度是O(nm)的、、

第三种是SPFA算法、、把他单独拿出来作为一种算法并不是非常好的、、他的实质应该是上面的bellman-ford算法的队列优化时间复杂度更低、O(KE)、K的值约等于2、、

Dijkstra算法

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。注意该算法要求图中不存在负权边。

设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

(1)初始时,S只包含起点D;U包含除D外的其他顶点,且U中顶点的距离为“起点D到该顶点的距离”(例如,U中顶点A的距离为[D,A]的长度,然后D和A不相邻,则A的距离为∞)

(2)从U中选出“距离最短的顶点K”,并将顶点K加入到S中;同时,从U中移除顶点K

(3)更新U中各个顶点到起点D的距离。之所以更新U中顶点的距离,是由于上一步中确定了K是求出最短路径的顶点,从而可以利用K来更新其他顶点到起点D的距离(例如,[D,A]的距离可能大于[D,K]+[K,A]的距离)

(4)重复步骤(2)和(3),直到遍历完所有顶点

最短路径算法(Dijkstra)

Dijkstra( 迪科斯特拉 )算法是用来解决单源最短路径的算法,要求路径权值非负数。该算法利用了深度优先搜索和贪心的算法。

下面是一个有权图,求从A到各个节点的最短路径。

第1步:从A点出发,判断每个点到A点的路径(如果该点不能直连A点则距离值为无穷大,如果该点能和A直连则是当前的权值),计算完之后把A点上色,结果如下图:

第2步:从除A点之外的点查找到距离A点最近的点C,从C点出发查找其邻近的节点(除去已上色的点),并重新计算C点的邻近点距离A点的值,如图中B点,若新值(C点到A点的值+C点到该点的路径)小于原值,则将值更新为5,同理更新D、E点。同时将C标记为已经处理过,如图所示涂色。

第3步:从上色的节点中查找距离A最近的B点,重复第3步操作。

第4步: 重复第3步,2步,直到所有的节点都上色。

最后就算出了从A点到所有点的最短距离。

leetcode 743题

上一篇:霍金死亡全过程(巨人观)
下一篇:商君列传(商君列传原文及翻译)

为您推荐

发表评论