floyd算法(Floyd算法用于求解图论优化中的)

本篇文章给大家谈谈floyd算法,以及Floyd算法用于求解图论优化中的对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 本文目录一览: 1、floyd算法 是动态规划的思想吗...

本篇文章给大家谈谈floyd算法,以及Floyd算法用于求解图论优化中的对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

floyd算法 是动态规划的思想吗

1.定义概览

Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。

2.算法描述

1)算法思想原理:

Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)

从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

2).算法描述:

a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。

b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。

3).Floyd算法过程矩阵的计算----十字交叉法

方法:两条线,从左上角开始计算一直到右下角 如下所示

给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点

floyd判圈算法

问题:如何检测一个链表是否有环,如果有,那么如何确定环的起点.

要求 : 空间复杂度为O(1), 时间复杂度为O(n).

假设一个有环链表如下图: 利用floyd判圈算法可以做到下面的三件事:

使用两个指针slow和fast。两个指针都从链表的起始处S开始。slow每次向后移动一步,fast每次向后移动两步。若在fast到达链表尾部前slow与fast相遇了,就说明链表有环。

这里可以简单的证明一下:反证法,假如没有环,那么slow永远追不上fast,那么在fast到达链表尾部前slow不会fast相遇了。若相遇了,链表就有环。

当slow和fast相遇时,slow和fast必定在环上,所以只要让一者不动,另一者走一圈直到相遇,走过的节点数就是环的长度。

如图所示,设AB=n, SA=m。设环的长度为L。

假设slow走过的节点数为i,那么有:

i = m + n + a L a为slow绕过的环的圈数。

因为fast速度为slow的两倍,所以相同时间走过的节点数为slow的两倍,所以有:

2 i = m + n + b L b为fast绕过的环的圈数。

两者做差有 : i = (b-a) L。

所以可知,fast和slow走过的距离是环的整数倍。

所以有m+n=L。

所以此时让slow回到起点S,,fast仍然在B。

让两个指针以每次一步的速度往前走。

当走了m步时,可发现slow和fast正好都在A处,即是环的起点。

floyd判圈算法是一个很有趣的算法,在某些题目上用处很大,比如下面这个。

给出一个数组 nums 包含 n + 1 个整数,每个整数是从 1 到 n (包括边界),保证至少存在一个重复的整数。假设只有一个重复的整数,找出这个重复的数。

注意事项

对于这个题目

Floyd算法的算法过程

1,从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。

2,对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比已知的路径更短。如果是更新它。

把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则G[i,j]=d,d表示该路的长度;否则G[i,j]=无穷大。定义一个矩阵D用来记录所插入点的信息,D[i,j]表示从Vi到Vj需要经过的点,初始化D[i,j]=j。把各个顶点插入图中,比较插点后的距离与原来的距离,G[i,j] = min( G[i,j], G[i,k]+G[k,j] ),如果G[i,j]的值变小,则D[i,j]=k。在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。

比如,要寻找从V5到V1的路径。根据D,假如D(5,1)=3则说明从V5到V1经过V3,路径为{V5,V3,V1},如果D(5,3)=3,说明V5与V3直接相连,如果D(3,1)=1,说明V3与V1直接相连。

上一篇:武侠群英传(古龙群侠传2)
下一篇:红外线感应灯(红外线人体感应灯)

为您推荐

发表评论