克鲁斯卡尔算法(prim算法)

今天给各位分享克鲁斯卡尔算法的知识,其中也会对prim算法进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、kruskal算法是什么?...

今天给各位分享克鲁斯卡尔算法的知识,其中也会对prim算法进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

kruskal算法是什么?

kruskal算法是求加权连通图的最小生成树的算法。

kruskal算法总共选择n- 1条边,(共n个点)所使用的贪心准则是:从剩下的边中选择一条不会产生环路的具有最小耗费的边加入已选择的边的集合中。注意到所选取的边若产生环路则不可能形成一棵生成树。

kruskal算法分e步,其中e是网络中边的数目。按耗费递增的顺序来考虑这e 条边,每次考虑一条边。当考虑某条边时,若将其加入到已选边的集合中会出现环路,则将其抛弃,否则,将它选入。

Kruskal算法基本思想:

每次选不属于同一连通分量(保证不生成圈)且边权值最小的顶点,将边加入MST,并将所在的2个连通分量合并,直到只剩一个连通分量。

排序使用Quicksort(O(eloge))。

检查是否在同一连通分量用Union-Find,每次Find和union运算近似常数。

Union-Find使用rank启发式合并和路径压缩。

总复杂度O(eloge)=O(elogv) (因为en(n-1)/2)。

什么是克鲁斯卡尔算法

设有一个有n个顶点的连通网N={V,E},最初先构造一个只有n个顶点,没有边的非连通图T={V, E},图中每个顶点自成一个连通分量。当在E中选到一条具有最小权值的边时,若该边的两个顶点落在不同的连通分量上,则将此边加入到T中;否则将此边舍去,重新选择一条权值最小的边。如此重复下去,直到所有顶点在同一个连通分量上为止。2算法描述编辑克鲁斯卡尔算法的时间复杂度为O(eloge)(e为网中边的数目),因此它相对于普里姆算法而言,适合于求边稀疏的网的最小生成树。克鲁斯卡尔算法从另一途径求网的最小生成树。假设连通网N=(V,{E}),则令最小生成树的初始状态为只有n个顶点而无边的非连通图T=(V,{∮}),图中每个顶点自成一个连通分量。在E中选择代价最小的边,若该边依附的顶点落在T中不同的连通分量上,则将此边加入到T中,否则舍去此边而选择下一条代价最小的边。依次类推,直至T中所有顶点都在同一连通分量上为止。例如图为依照克鲁斯卡尔算法构造一棵最小生成树的过程。代价分别为1,2,3,4的四条边由于满足上述条件,则先后被加入到T中,代价为5的两条边(1,4)和(3,4)被舍去。因为它们依附的两顶点在同一连通分量上,它们若加入T中,则会使T中产生回路,而下一条代价(=5)最小的边(2,3)联结两个连通分量,则可加入T。因此,构造成一棵最小生成树。上述算法至多对 e条边各扫描一次,假若以“堆”来存放网中的边,则每次选择最小代价的边仅需O(loge)的时间(第一次需O(e))。又生成树T的每个连通分量可看成是一个等价类,则构造T加入新的过程类似于求等价类的过程,由此可以以“树与等价类”中介绍的 mfsettp类型来描述T,使构造T的过程仅需用O(eloge)的时间,由此,克鲁斯卡尔算法的时间复杂度为O(eloge)。[1] 

c加加提问,克鲁斯卡尔算法是什么?

克鲁斯卡尔算法,从边的角度求网的最小生成树,时间复杂度为O(eloge)。和普里姆算法恰恰相反,更适合于求边稀疏的网的最小生成树。

对于任意一个连通网的最小生成树来说,在要求总的权值最小的情况下,最直接的想法就是将连通网中的所有边按照权值大小进行升序排序,从小到大依次选择。

由于最小生成树本身是一棵生成树,所以需要时刻满足以下两点:

生成树中任意顶点之间有且仅有一条通路,也就是说,生成树中不能存在回路;

对于具有 n 个顶点的连通网,其生成树中只能有 n-1 条边,这 n-1 条边连通着 n 个顶点。

连接 n 个顶点在不产生回路的情况下,只需要 n-1 条边。

所以克鲁斯卡尔算法的具体思路是:将所有边按照权值的大小进行升序排序,然后从小到大一一判断,条件为:如果这个边不会与之前选择的所有边组成回路,就可以作为最小生成树的一部分;反之,舍去。直到具有 n 个顶点的连通网筛选出来 n-1 条边为止。筛选出来的边和所有的顶点构成此连通网的最小生成树。

判断是否会产生回路的方法为:在初始状态下给每个顶点赋予不同的标记,对于遍历过程的每条边,其都有两个顶点,判断这两个顶点的标记是否一致,如果一致,说明它们本身就处在一棵树中,如果继续连接就会产生回路;如果不一致,说明它们之间还没有任何关系,可以连接。

假设遍历到一条由顶点 A 和 B 构成的边,而顶点 A 和顶点 B 标记不同,此时不仅需要将顶点 A 的标记更新为顶点 B 的标记,还需要更改所有和顶点 A 标记相同的顶点的标记,全部改为顶点 B 的标记。

图 1 连通网

请点击输入图片描述

例如,使用克鲁斯卡尔算法找图 1 的最小生成树的过程为:

首先,在初始状态下,对各顶点赋予不同的标记(用颜色区别),如下图所示:

(1)

请点击输入图片描述

对所有边按照权值的大小进行排序,按照从小到大的顺序进行判断,首先是(1,3),由于顶点 1 和顶点 3 标记不同,所以可以构成生成树的一部分,遍历所有顶点,将与顶点 3 标记相同的全部更改为顶点 1 的标记,如(2)所示:

(2)

请点击输入图片描述

其次是(4,6)边,两顶点标记不同,所以可以构成生成树的一部分,更新所有顶点的标记为:

(3)

请点击输入图片描述

其次是(2,5)边,两顶点标记不同,可以构成生成树的一部分,更新所有顶点的标记为:

(4)

请点击输入图片描述

然后最小的是(3,6)边,两者标记不同,可以连接,遍历所有顶点,将与顶点 6 标记相同的所有顶点的标记更改为顶点 1 的标记:

(5)

请点击输入图片描述

继续选择权值最小的边,此时会发现,权值为 5 的边有 3 个,其中(1,4)和(3,4)各自两顶点的标记一样,如果连接会产生回路,所以舍去,而(2,3)标记不一样,可以选择,将所有与顶点 2 标记相同的顶点的标记全部改为同顶点 3 相同的标记:

(6)

请点击输入图片描述

当选取的边的数量相比与顶点的数量小 1 时,说明最小生成树已经生成。所以最终采用克鲁斯卡尔算法得到的最小生成树为(6)所示。

实现代码:#include "stdio.h"#include "stdlib.h"#define MAX_VERtEX_NUM 20#define VertexType inttypedef struct edge{VertexType initial;VertexType end;VertexType weight;}edge[MAX_VERtEX_NUM];//定义辅助数组typedef struct {VertexType value;//顶点数据int sign;//每个顶点所属的集合}assist[MAX_VERtEX_NUM];assist assists;//qsort排序函数中使用,使edges结构体中的边按照权值大小升序排序int cmp(const void *a,const void*b){return  ((struct edge*)a)-weight-((struct edge*)b)-weight;}//初始化连通网void CreateUDN(edge *edges,int *vexnum,int *arcnum){printf("输入连通网的边数:\n");scanf("%d %d",(*vexnum),(*arcnum));printf("输入连通网的顶点:\n");for (int i=0; i(*vexnum); i++) {scanf("%d",(assists[i].value));assists[i].sign=i;}printf("输入各边的起始点和终点及权重:\n");for (int i=0 ; i(*arcnum); i++) {scanf("%d,%d,%d",(*edges)[i].initial,(*edges)[i].end,(*edges)[i].weight);}}//在assists数组中找到顶点point对应的位置下标int Locatevex(int vexnum,int point){for (int i=0; ivexnum; i++) {if (assists[i].value==point) {return i;}}return -1;}int main(){int arcnum,vexnum;edge edges;CreateUDN(edges,vexnum,arcnum);//对连通网中的所有边进行升序排序,结果仍保存在edges数组中qsort(edges, arcnum, sizeof(edges[0]), cmp);//创建一个空的结构体数组,用于存放最小生成树edge minTree;//设置一个用于记录最小生成树中边的数量的常量int num=0;//遍历所有的边for (int i=0; iarcnum; i++) {//找到边的起始顶点和结束顶点在数组assists中的位置int initial=Locatevex(vexnum, edges[i].initial);int end=Locatevex(vexnum, edges[i].end);//如果顶点位置存在且顶点的标记不同,说明不在一个集合中,不会产生回路if (initial!=-1 end!=-1assists[initial].sign!=assists.sign) {//记录该边,作为最小生成树的组成部分minTree[num]=edges[i];//计数+1num++;//将新加入生成树的顶点标记全不更改为一样的for (int k=0; kvexnum; k++) {if (assists[k].sign==assists.sign) {assists[k].sign=assists[initial].sign;}}//如果选择的边的数量和顶点数相差1,证明最小生成树已经形成,退出循环if (num==vexnum-1) {break;}}}//输出语句for (int i=0; ivexnum-1; i++) {printf("%d,%d\n",minTree[i].initial,minTree[i].end);}return 0;}

测试数据:

输入连通网的边数:

6 10

输入连通网的顶点:

1

2

3

4

5

6

输入各边的起始点和终点及权重:

1,2,6

1,3,1

1,4,5

2,3,5

2,5,3

3,4,5

3,5,6

3,6,4

4,6,2

5,6,6

1,3

4,6

2,5

3,6

2,3

图的相关算法(二):最小生成树算法

在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树。

例如,对于上图中的连通网可以有多棵权值总和不相同的生成树。

克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。

基本思想 :按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路。

具体做法 :首先构造一个只含n个顶点的森林,然后依照权值从小到大从连通网中选择边加入到森林中,并使得森林不产生回路,直到森林变成一棵树为止。

以图G4为例(更详细的可以参考《算法导论》p367),对Kruskal进行演示(假设,用数组R保存最小生成树结果)。

第1步 :将边E,F加入R中。

边E,F的权值最小,因此将它加入到最小生成树结果R中。

第2步 :将边C,D加入R中。

上一步操作之后,边C,D的权值最小,因此将它加入到最小生成树结果R中。

第3步 :将边D,E加入R中。

上一步操作之后,边D,E的权值最小,因此将它加入到最小生成树结果R中。

第4步 :将边B,F加入R中。

上一步操作之后,边C,E的权值最小,但C,E会和已有的边构成回路;因此,跳过边C,E。同理,跳过边C,F。将边B,F加入到最小生成树结果R中。

第5步 :将边E,G加入R中。

上一步操作之后,边E,G的权值最小,因此将它加入到最小生成树结果R中。

第6步 :将边A,B加入R中。

上一步操作之后,边F,G的权值最小,但F,G会和已有的边构成回路;因此,跳过边F,G。同理,跳过边B,C。将边A,B加入到最小生成树结果R中。

此时,最小生成树构造完成!它包括的边依次是: E,F C,D D,E B,F E,G A,B 。

根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:

问题一 对图的所有边按照权值大小进行排序。

问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。

问题一用排序算法排序即可。

问题二,处理方式:记录顶点在“最小生成树”中的终点,顶点的终点是“在最小生成树中与它连通的最大顶点"(关于这一点,后面会通过图片给出说明)。然后每次需要将一条边添加到最小生成树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。 以下图来进行说明:

在将E,F C,D D,E加入到最小生成树R中之后,这几条边的顶点就都有了终点:

关于终点,就是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是"与它连通的最大顶点"。 因此,接下来,虽然C,E是权值最小的边。但是C和E的重点都是F,即它们的终点相同,因此,将C,E加入最小生成树的话,会形成回路。这就是判断回路的方式。

普里姆(Prim)算法,也是求加权连通图的最小生成树的算法。

基本思想

对于图G而言,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边。从所有的 uЄU ,vЄ(V-U)(V-U表示除去U的所有顶点)的边中选取权值最小的边(u,v),将顶点v加入U中,将边(u,v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,此时集合T中包含了最小生成树中的所有边。

以上图G4为例,来对普里姆进行演示(从第一个顶点A开始通过普里姆算法生成最小生成树)。

初始状态 :V是所有顶点的集合,即V={A,B,C,D,E,F,G};U和T都是空!

第1步 :将顶点A加入到U中。

此时,U={A}。

第2步 :将顶点B加入到U中。

上一步操作之后,U={A}, V-U={B,C,D,E,F,G};因此,边(A,B)的权值最小。将顶点B添加到U中;此时,U={A,B}。

第3步 :将顶点F加入到U中。

上一步操作之后,U={A,B}, V-U={C,D,E,F,G};因此,边(B,F)的权值最小。将顶点F添加到U中;此时,U={A,B,F}。

第4步 :将顶点E加入到U中。

上一步操作之后,U={A,B,F}, V-U={C,D,E,G};因此,边(F,E)的权值最小。将顶点E添加到U中;此时,U={A,B,F,E}。

第5步 :将顶点D加入到U中。

上一步操作之后,U={A,B,F,E}, V-U={C,D,G};因此,边(E,D)的权值最小。将顶点D添加到U中;此时,U={A,B,F,E,D}。

第6步 :将顶点C加入到U中。

上一步操作之后,U={A,B,F,E,D}, V-U={C,G};因此,边(D,C)的权值最小。将顶点C添加到U中;此时,U={A,B,F,E,D,C}。

第7步 :将顶点G加入到U中。

上一步操作之后,U={A,B,F,E,D,C}, V-U={G};因此,边(F,G)的权值最小。将顶点G添加到U中;此时,U=V。

此时,最小生成树构造完成!它包括的顶点依次是:A B F E D C G。

上一篇:包含纪录片毛泽东的词条
下一篇:台球教程(台球手势)

为您推荐

发表评论