今天给各位分享抽样方法的知识,其中也会对抽样方法中抽样误差最小的是进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
- 1、抽样分为哪几种方式?
- 2、抽样调查方法有哪些呢?
- 3、抽样方法有哪两种?
- 4、抽样方法都有什么?
- 5、抽样方法有哪几种 抽样方法的介绍
- 6、抽样方法
抽样分为哪几种方式?
1、方便抽样(Convenience sampling)
样本限于总体中易于抽到的一部分。最常见的方便抽样是偶遇抽样,即研究者将在某一时间和环境中所遇到的每一总体单位均作为样本成员。“街头拦人法”就是一种偶遇抽样。
某些调查对被调查者来说是不愉快的、麻烦的,这时为方便起见就采用以自愿被调查者为调查样本的方法。方便抽样是非随机抽样中最简单的方法,省时省钱,但样本代表性因受偶然因素的影响太大而得不到保证。
2、判断抽样(Judgment sampling)
指由专家判断而有目的地抽取他认为“有代表性的样本”。例如:社会学家研究某国家的一般家庭情况时,常以专家判断方法挑选“中型城镇”进行。
3、配额抽样(Quota sampling)
指先将总体元素按某些控制的指标或特性分类,然后按方便抽样或判断抽样选取样本元素。
相当于包括两个阶段的加限制的判断抽样。在第一阶段需要确定总体中的特性分布(控制特征),通常,样本中具备这些控制特征的元素的比例与总体中有这些特征的元素的比例是相同的,通过第一步的配额,保证了在这些特征上样本的组成与总体的组成是一致的。
在第二阶段,按照配额来控制样本的抽取工作,要求所选出的元素要适合所控制的特性。例如:定点街访中的配额抽样。
4、滚雪球抽样(Snowball sampling)
以若干个具有所需特征的人为最初的调查对象,然后依靠他们提供认识的合格的调查对象,再由这些人提供第三批调查对象,……依次类推,样本如同滚雪球般由小变大。
滚雪球抽样多用于总体单位的信息不足或观察性研究的情况。这种抽样中有些分子最后仍无法找到,有些分子被提供者漏而不提,两者都可能造成误差。
非概率抽样(Non-probability sampling)又称非随机抽样,指根据一定主观标准抽取样本,令总体中每个个体的被抽取不是依据其本身的机会,而是完全决定于调研者的意愿。
其特点为不具有从样本推断总体的功能,但能反映某类群体的特征,是一种快速、简易且节省的数据收集方法。当研究者对总体具有较好的了解时可以采用此方法。
或是总体过于庞大、复杂,采用概率方法有困难时,可以采用非概率抽样来避免概率抽样中容易抽到实际无法实施或“差”的样本,从而避免影响对总体的代表度。
扩展资料
简单易行、成本低、省时间,在统计上也比概率抽样简单。但由于无法排除抽样者的主观性,无法控制和客观地测量样本代表性,因此样本不具有推论总体的性质。
非概率抽样多用于探索性研究和预备性研究,以及总体边界不清难于实施概率抽样的研究。在实际应用中,非概率抽样往往与概率抽样结合使用。
参考资料来源:百度百科-非概率抽样
抽样调查方法有哪些呢?
抽样调查方法有:
1.简单随机抽样
简单随机抽样也称为单纯随机抽样,是指从总体N个单位中任意抽取n个单位作为样本,使每个可能的样本被抽中的概率相等的一种抽样方式。简单随机抽样一般可采用掷硬币、掷骰子、抽签、查随机数表等办法抽取样本。在统计调查中,由于总体单位较多,前三种方法较少采用,主要运用第四种方法。
2.分层抽样
分层抽样又称为分类抽样、或类型抽样,它首先是将总体的N个单位分成互不交叉、互不重复的k个部分,我们称之为层;然后在每个层内分别抽选n1、n2、......nk个样本,构成一个容量为个样本的一种抽样方式。
3.整群抽样
整群抽样是首先将总体中各单位归并成若干个互不交叉、互不重复的集合,我们称之为群;然后以群为抽样单位抽取样本的一种抽样方式。整群抽样特别适用于缺乏总体单位的抽样框。应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。
4.等距抽样(系统抽样)
等距抽样也称为系统抽样、或机械抽样,它是首先将总体中各单位按一定顺序排列,根据样本容量要求确定抽选间隔,然后随机确定起点,每隔一定的间隔抽取一个单位的一种抽样方式。根据总体单位排列方法,等距抽样的单位排列可分为三类:按有关标志排队、按无关标志排队以及介于按有关标志排队和按无关标志排队之间的按自然状态排列。
抽样方法有哪两种?
抽样方法有哪些
(1)简单随即抽样:包括直接抽选法、抽签法、随机数字表法。
(2)分类抽样:也叫类型抽样或分层抽样,先将总体中所有的单位按照某个标志分成若干类(组)然后在各个类中分别随机抽取样本。
(3)机械抽样:先将抽样总体单位按照一定顺序排队,根据总体单位数和样本单位数计算出抽选间隔(抽选距离),然后按照一定的间隔抽选样本单位。由于抽选间隔相等,所以也叫等距抽样。
(4)整群抽样:先将总体分为若干群或组,然后一群一群地抽选,每一群中包含若干个样本单位
抽样估计的方法有哪两种
随机抽样和分层抽样
根据取样的方式不同,抽样方式有哪两种
根据取样的方式不同,抽样方式有哪两种
统计学的中心问题就是如何根据样本去探求有关总体的真实情况。因此,如何从一个总体中抽取一些元素组成样本,什么样的样本最能代表总体,这直接影响着统计的准确性。如果抽取元素的方法是使总体中的元素成分不改,所观测到的数值是互相独立的随机变量,并有着和总体一样的分布,这样的样本是一个简单的随机样本,它是总体的最好代表,而取得简单随机样本的过程叫做简单随机取样。
简单随机取样就是重复进行同一随机试验,也就是指每次试验都在同一组条件下进行,因而每次试验得到什么结果,其可能程度都是固定不变的。对于有限总体,简单随机抽样意味着每次抽出一个元素后,放还再抽,若不放还,总体的成分将有所改变,那么再抽时,出现各种结果的可能程度就相对地改变了。至于无限总体则没有区分“放回”或“不放回”的必要。
除上述原则外,另一方面,获得样本的具体方法能否保证观察值是独立的,这是问题的关键,因此,一样本的随机与否还取决于获得样本的具体方法。
在具体进行取样时,必须根据研究目的的不同,选择不同的取样方法。
①单纯随机取样法先把每个个体编号,然后用抽签的方式从总体中抽取样本。这种方法适用于个体间差异较小、所需抽选的个体数较少或个体的分布比较集中的研究对象。
②分区随机取样法将总体随机地分成若干部分,然后再从每一部分随机抽选若干个体组成样本。这种抽样法可以更有组织地进行,而且中选的个体在总体的分布比单纯随机取样更均匀。
③系统取样法先有系统地将总体分成若干组,然后随机地从第一组决定一个起点,如每组15个元素,决定从第一组的第13个元素选起,那么以后选定的单位即28,43,58,73等等。
④分层取样法根据对总体特性的了解,把总体分成若干层次或类型组,然后从各个层次中按一定比例随机抽选。这种方法的代表性好,但若层次划分得不正确,也不能获得有高度代表性的样本。
抽样的基本方法为什么和什么两大类
抽样方法可分为两大类:
随机抽样(Probability-Sampling),即在抽样时,母群体中每一个抽样单位被选为样本之机率相同。 随机抽样具有健全之统计理论基础,可用机率理论加以解释,是一种客观而科学的抽样方法,在市场调查 中通常都用随机抽样。
非随时抽样(Non-Probabity-Sampling),在抽样时,抽样单位被选为样本之机率为不可知。
常用的抽样方法有哪些
1、简单随机抽样 优点:当总体内观察单位数与样本例数都不大时拥有实施,均数及其标 准误的计算也比较简单。
2、分层抽样 优点:易于理解、简单易行。容易得到一个按比例分配的样本。
3、系统抽样 优点:由于分层后各层内的个体同质性质增强,使得抽样误差比较小。
4、整群抽样 优点:便于组织,节省人力、物力、时间,容易控制调查质量。
抽样方法都有什么?
还有随机抽样,分层抽样,整群抽样。
1,随机抽样:
随机抽样要求严格遵循概率原则,每个抽样单元被抽中的概率相同,并且可以重现。随机抽样常常用于总体个数较少时,它的主要特征是从总体中逐个抽取。 随机抽样可以分为单纯随机抽样、系统抽样、分层抽样以及整群抽样。
2,分层抽样:
分层抽样是指在抽样时,将总体分成互不相交 [2] 的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本的方法。层内变异越小越好,层间变异越大越好。
3,整群抽样:
整群抽样又称聚类抽样,是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。
扩展资料:
1,随机抽样优缺点:
(1)优点:操作简便易行;
(2)缺点:总体过大不易实行。
2,分层抽样优点:
(1)减小抽样误差,分层后增加了层内的同质性,因而可使观察值的变异度减小,各层的抽样误差减小。在样本含量相同的情况下.分层抽样总的标准误一般均小于单纯随机抽样、系统抽样和整群抽样的标准误。
(2)抽样方法灵活,可以根据各层的具体情况对不同的层采用不同的抽样方法。如调查某地居民某病患病率,分为城、乡两层。城镇人口集中.可考虑系统抽样方法;农村人口分散,可采用整群抽样方法。
(3)可对不同层独立进行分析。分层抽样的缺点是若分层变量选择不当,层内变异较大,层间均数相近,分层抽样就失去了意义。
3,整群抽样优缺点
整群抽样的优点是实施方便、节省经费;
整群抽样的缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简单随机抽样。
参考资料:百度百科---抽样方法
抽样方法有哪几种 抽样方法的介绍
1、抽样方法主要有四类:随机抽样、分层抽样、整体抽样、系统抽样;
2、分层抽样定义:分层抽样就是将总体单位按其属性特征分成若干类型或层,然后在类型或层中随机抽取样本单位。特点是:由于通过划类分层,增大了各类型中单位间的共同性,容易抽出具有代表性的调查样本。该方法适用于总体情况复杂,各单位之间差异较大,单位较多的情况。
3、随机抽样定义:随机抽样要求严格遵循概率原则,每个抽样单元被抽中的概率相同,并且可以重现。随机抽样常常用于总体个数较少时,它的主要特征是从总体中逐个抽取。 随机抽样可以分为单纯随机抽样、系统抽样、分层抽样以及整群抽样。
4、整群抽样定义:整群抽样又称聚类抽样,是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。
5、系统抽样定义:系统抽样亦称为机械抽样、等距抽样。当总体中的个体数较多时,采用简单随机抽样显得较为费事。这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。
抽样方法
抽样方法主要包括:随机抽样、分层抽样、整体抽样、系统抽样。
一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取使总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
扩展资料:
随机抽样要求严格遵循概率原则,每个抽样单元被抽中的概率相同,并且可以重现。随机抽样常常用于总体个数较少时,它的主要特征是从总体中逐个抽取。随机抽样可以分为单纯随机抽样、系统抽样、分层抽样以及整群抽样。
当总体中的个体数较多时,采用简单随机抽样显得较为费事。这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体。
参考资料来源:
百度百科-抽样方法
发表评论