合成孔径雷达(合成孔径雷达与相控阵雷达)

今天给各位分享合成孔径雷达的知识,其中也会对合成孔径雷达与相控阵雷达进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、简述真实孔径雷达和合成孔径雷达的区别...

今天给各位分享合成孔径雷达的知识,其中也会对合成孔径雷达与相控阵雷达进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

简述真实孔径雷达和合成孔径雷达的区别

RAR真实孔径雷达是单个雷达,SAR合成孔径雷达是指雷达移动,目标固定不动。RAR和SAR的概念就完全不一样。

1、植被覆盖度(VFC):植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比,基于像元二分模型计算,假定由由植被覆盖地表和无植被覆盖地表构成一个像元,基于像元二分模型的混合像元法可以利用两个参数削弱大气。

土壤背景和植被类型的影响。VFC=(NDVI-NDVIsoil)/(NDVIveg-NDVIsoil)NDVIsoil为完全是裸土或无植被覆盖区域的NDVI值,NDVIveg则代表完全被植被所覆盖的像元的NDVI值。

即纯植被像元的NDVI值,Soil和lveg值受大气、地表湿度、太阳光、植被类型的影响,所以不能取影像NDVI的最大值和最小值,而应该取置信度区间内的最大值和最小值。

2、植被覆盖度计算过程:首先计算NDVI,使用TM3和4波段计算归一化植被指数,突出显示植被部分(输出后图像高亮的部分就是植被区域)-1=NDVI=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等。

正值,表示有植被覆盖,且随覆盖度增大而增大;NDVI=(近红外-红)/(近红外+红)=(TM4-TM3)/(TM3+TM4),若TM34都是0,则NDVI为-1,然后根据置信区间计算NDVIveg和NDVIsoil,接着计算植被覆盖度。

3、各种植被指数:NDVI可以指示植被生长状况和覆盖度,根据地物光谱信息推算地表的植被状况定量值。RVI比值植被指数可以监测和估算生物量,PVI垂直植被指数可以消除土壤背景与GVI物理意义相同,GVI绿度植被指数是各波段辐射亮度的加权和,使得植被和土壤的光谱特性分离。

4、反演植被覆盖度方法:如植被指数法、像元分解模型法、决策树分类法、经验模型法,经验模型法受观测条件、局限性大,植被指数法估算精度低,像元分解法所依据的原理需要进一步考证、决策树需要大量实测数据。

工作量大,属于定量遥感范畴,提升估测精度。目前没有较好的分割算法,制约了变化检测方法发展,对植被覆盖度变化监测可以提高不同地物间的类间可分性,采用多尺度、多源数据融合监测。

什么是合成孔径雷达?

雷达的波束宽度由频率及天线的大小所决定。为提高清晰度,必须加大天线的尺寸。但不必在纵横两个坐标方向加大,只要左右加大就可以了。但是这种天线在飞机机头部分并不妥当,因此装在侧面,能够以高清晰度“看”飞行沿线的地面。这就是“侧视雷达(SLR)”。其代表性的产品有美国摩托罗拉公司所开发而悬挂在OV—1“莫霍克”观测/侦察机之机身下的APS—94。此种雷达使用I/J波段。

另外,固特异公司所开发的UPD—4及UPD—6两种侧视雷达,配置在美国空军的RF—4C“鬼怪”式飞机上,以及西德空军和日本航空自卫队的RF—4E飞机上。雷达所获得的影像可以记录在宽度241毫米的摄影底片上,侧视雷达所使用的频率越高,或是天线的尺寸越大,其清晰度也越好。但是由於天线的尺寸不可能任意加大,因此就转而使用“合成孔径雷达(SAR)”这种方法。

其方法是:将一定时间内侧视雷达所获得的信号加以贮存,并利用电脑处理,则其所获得的效果,等于拥有与该时间内飞机所飞行的长度相当的天线尺寸。清晰度依使用频率而定,在I/J波段中大约是3米左右。使用最低频率——例如合成孔径雷达使用波段为J波段的话,则能够穿过森林或伪装物而“看见”目的物。频率低,也就是波长长的话,电波就能绕射而穿过树叶或小树枝,因而此种雷达称为“穿叶雷达”。在70年代末期已经证实其可行性,但是仍有测定费时的缺点。

合成孔径雷达有哪些功能?

合成孔径雷达工作时按一定的重复频率发、收脉冲,真实天线依次占一虚构线阵天线单元位置。把这些单元天线接收信号的振幅与相对发射信号的相位叠加起来,便合成一个等效合成孔径天线的接收信号。若直接把各单元信号矢量相加,则得到非聚焦合成孔径天线信号。在信号相加之前进行相位校正,使各单元信号同相相加,得到聚焦合成孔径天线信号。地物的反射波由合成线阵天线接收,与发射载波作相干解调,并按不同距离单元记录在照片上,然后用相干光照射照片便聚焦成像。这一过程与全息照相相似,差别只是合成线阵天线是一维的,合成孔径雷达只在方位上与全息照相相似,故合成孔径雷达又可称为准微波全息设备。

合成孔径雷达:利用遥感平台的移动,将一个小孔径的天线安装在平台侧方,以代替大孔径的天线,提高方位分辨率的雷达。

在航空方面,合成孔径雷达的分辨率可达到1米以内。航天器上的合成孔径雷达因作用距离远,为获得高分辨率,技术较为复杂。1972年发射的“阿波罗”17号飞船、1978年发射的“海洋卫星”和1981年发射的“哥伦比亚”号航天飞机上都装有合成孔径雷达。

合成孔径雷达主要用于航空测量、航空遥感、卫星海洋观测、航天侦察、图像匹配制导等。它能发现隐蔽和伪装的目标,如识别伪装的导弹地下发射井、识别云雾笼罩地区的地面目标等。在导弹图像匹配制导中,采用合成孔径雷达摄图,能使导弹击中隐蔽和伪装的目标。合成孔径雷达还用于深空探测,例如用合成孔径雷达探测月球、金星的地质结构。

合成孔径雷达干扰抑制技术科普

姓名:邢航;学号:22021110042;学院:电子工程学院

       合成孔径雷达(SAR)具有全天时全天候、高分辨率的工作特点,作为一种有源雷达系统,合成孔径雷达高分辨成像过程中会受多样式复杂多变的强电磁干扰影响,从而严重影响合成孔径雷达最终的高分辨成像结果[1],因此,如何有效对抗复杂电磁干扰是合成孔径雷达探测感知的难点和重点之一。该文针对合成孔径雷达不同的干扰样式、干扰来源等背景进行了简单梳理,旨在为科普合成孔径雷达抗干扰提供一定的参考。

       合成孔径雷达;干扰类型;干扰抑制

       什么是合成孔径雷达干扰抑制?

       合成孔径雷达(Synthetic Aperture Radar, SAR)是一种主动式微波遥感设备,能够提供了解全球环境变化的重要数据,在科学、商业和国防等领域得到了广泛的应用。无线电技术的迅速发展使主动遥感系统的通道受到干扰的可能性大大提高,特别是那些几百兆赫兹[2]的高分辨率SAR系统。

       合成孔径雷达的基本原理来源于实孔径技术,但其又突破了实孔径技术的瓶颈和限制。对于传统的实孔径技术,其方位分辨率反比于实孔径的大小,即实孔径越长,其分辨率越高。但是同样的,随着作用距离变远,雷达的方位分辨率也会随之变低。假设需要在几十千米的作用距离下获得米级的高分辨率图像,则至少需要几百米的实孔径天线,然而在飞机或者卫星平台上安装如此大的天线是根本不可能的事情。因此为了突破实孔径天线对方位分辨率的限制,1951年,文献[3–5]发现波束的方位向分辨率能通过雷达与目标之间的相对运动而明显改善,这一理论为合成孔径雷达实现2维高分辨观测成像打下了基础。实际上,该理论利用了长时间平台运动带来的时间采样来代替固定不动的实孔径空间采样。而合成孔径的基本原理正是基于用时间信息弥补了空间信息,从而实现了方位向的高分辨率。与此同时,可以通过发射具有大带宽的信号经距离脉压后可以得到距离向高分辨率。因此,长时间的能量积累提高了系统的输出信噪比,同时合成的较长孔径又能获得超高分辨率,故合成孔径雷达在运动目标检测、目标自动识别等方面都有很好的发挥和应用[6,7]。

       然而,作为一种宽带雷达系统,合成孔径雷达在工作频段内易受到敌方有源干扰机信号、无线通信信号、广播电视信号和其它雷达信号等多种复杂电磁干扰的影响,即使合成孔径雷达能够通过2维匹配滤波获得较高的能量积累,但强干扰源仍将严重制约高分辨成像效果,从而进一步影响后续合成孔径雷达对地、海的观测[8]。在现代信息电子战中,必须意识到,信息电子战的核心就在于如何获取复杂电磁环境中对信息的制霸权,合成孔径雷达抗干扰能力的重要性丝毫不逊色于合成孔径雷达系统研制本身,如果在没有任何干扰抑制措施的前提下,一旦合成孔径雷达系统面临电子干扰,那么其很容易丧失信息获取能力,这就是所谓的“睁眼瞎”[8–10]。如图1所示,左侧为受到窄带射频干扰影响下的合成孔径雷达图像,右侧是通过干扰抑制算法得到的真实图像。从图中可以很明显的看出,许多图中反射强度较弱的细节尤其是关注的目标点被严重干扰,此时无法获取对其的有效检测和识别[11,12]。

       而图1所示的仅仅是一种简单的影响整个场景信干噪比(Signal-to-Interference-and-Noise Ratio, SINR)的类噪声式压制干扰,就足以对合成孔径雷达成像造成严重的影响;而随着现代战争信息化的逐渐加强,很多情况下带有欺骗性质的干扰机具有更强的军事意义并造成更恶劣的影响,其能够产生与合成孔径雷达回波相似的散射点[13,14],来产生欺骗性的目标,如图2所示,图2(b)相较于图2(a)在图的右侧位置多了许多虚假的车辆,这将影响后续对目标的检测和判断。

       因此,随着合成孔径雷达在军用和民用领域的广泛应用,其所面临的电磁环境愈加复杂,并且对它的干扰手段也越来越多,干扰形式越来越灵活,此时合成孔径雷达的抗干扰技术尤为关键,这对提高合成孔径雷达系统在复杂电磁环境中的生存能力和实用效能,具有重要的现实意义。

       在复杂电磁环境中,合成孔径雷达受到的干扰类型可以根据干扰的能量来源、产生途径、频带带宽以及作用机理等不同标准进行分类。按照干扰的能量来源,合成孔径雷达可以分为无源干扰和有源干扰两大类[15]。其中,无源干扰是指利用非目标的物体对电磁波的反射、折射、散射或吸收等现象产生的干扰。一般情况下,无源干扰不会影响合成孔径雷达的正常工作,而是减弱乃至改变了敌我目标的雷达反射面积(Radar Cross-Section, RCS),使得合成孔径雷达获得失真的高分辨图像,增大图像的解译难度。典型的无源干扰包括箔条干扰、吸波材料、反雷达伪装网等。而有源干扰是指由辐射电磁波的能源所产生的干扰,也是本文介绍的核心。合成孔径雷达目前面临的有源干扰类型多样,可以简单分为有意干扰和无意干扰[16],其中无意干扰是指由于自然或其它因素无意识形成的干扰,包括宇宙干扰、雷电干扰以及其他无线电射频干扰等;有意干扰是指由于人为有意识制造的干扰,是战争时期合成孔径雷达面临的主要威胁,其可以进一步分为压制干扰和欺骗干扰[17],具体的干扰类型如图3所示。

       对于有源干扰信号而言,如果从干扰信号本身对比合成孔径雷达宽带信号的相对带宽出发,干扰信号又可以统一划分为窄带干扰和宽带干扰,像无线电射频干扰(如电视信号、FM/AM调频信号等)则是一种典型的窄带干扰[18],其作用效果与窄带压制干扰类似,可以归结为无意的压制干扰,而其它宽带雷达信号则是一种典型的宽带干扰。同时,如果从有意干扰源信号到达合成孔径雷达接收机的方式考虑[19],如干扰是直接到达接收机还是经过地面待观测场景散射到达接收机[20–22],则有意干扰信号又可以划分为直达波干扰和散射波干扰(又称为直达波干扰和弹射式干扰[23,24])。因此,干扰的分类方式多种多样,文献层出不穷,合成孔径雷达抗干扰技术,从不同体制的合成孔径雷达系统、任务、目标与环境相互作用的视角,呈现着丰富的研究内容。

[1]黄岩, 赵博, 陶明亮, 等. 合成孔径雷达抗干扰技术综述[J]. 雷达学报, 2020, 9(1): 86–106. doi: 10.12000/JR19113

[2]SPENCER M, ULABY F. Spectrum issues faced by active remote sensing: radio frequency interference and operational restrictions technical committees[J]. IEEE Geoscience and Remote Sensing Magazine, 2016, 4(1): 40-45.

[3]WILEY C A. Synthetic aperture radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, AES-21(3): 440–443. doi: 10.1109/TAES.1985.310578.

[4]CUTRONA L J, LEITH E N, PORCELLO L J, et al. On the application of coherent optical processing techniques to synthetic-aperture radar[J]. Proceedings of the IEEE, 1966, 54(8): 1026–1032. doi: 10.1109/PROC.1966.4987.

[5]SHERWIN C W, RUINA J E, and RAWCLIFFE R D. Some early developments in synthetic aperture radar system[J]. IRE Transactions on Military Electronic, 1962, 6(2): 111–115.

[6]CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston, MA, USA: Artech House, 2005.

[7]保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005. BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technique[M]. Beijing: Publishing House of Electronics Industry, 2005.

[8]陶明亮. 极化SAR射频干扰抑制与地物分类方法研究[D]. [博士论文], 西安电子科技大学, 2016.

[9]林晓烘. 星载合成孔径雷达干扰与抗干扰技术研究[D]. [博士论文], 国防科学技术大学, 2014.

[10]ZHOU Feng and TAO Mingliang. Research on methods for narrow-band interference suppression in synthetic aperture radar data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3476–3485. doi: 10.1109/JSTARS.2015.2431916.

[11]黄岩. 复杂电磁环境下合成孔径雷达动目标检测与识别方法研究[D]. [博士论文], 西安电子科技大学, 2018.

[12]SANDERS F H, SOLE R L, BEDFORD B L, et al. Effects of RF interference on radar receivers[R]. NTIA Report TR-06-444, 2006.

[13]ZHAO Bo, ZHOU Feng, and BAO Zheng. Deception jamming for squint SAR based on multiple receivers[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3988–3998.doi: 10.1109/JSTARS.2014.2322612.

[14]ZHAO Bo, HUANG Lei, ZHOU Feng, et al. Performance improvement of deception jamming against SAR based on minimum condition number[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(3): 1039–1055. doi: 10.1109/JSTARS.2016.2614957.

[15]张永顺, 童宁宁, 赵国庆. 雷达电子战原理[M]. 北京: 国防工业出版社, 2006.

[16]袁文先, 杨巧玲. 百年电子战[M]. 北京: 军事科学出版社, 2008.

[17]赵国庆. 雷达对抗原理[M]. 西安: 西安电子科技大学出版社, 1999.

[18]TAO Mingliang, ZHOU Feng, and ZHANG Zijing. Characterization and mitigation of radio frequency interference in PolSAR data[J]. Radio Science, 2017, 52(11): 1405–1418. doi: 10.1002/2017RS006252.

[19]何发远, 谢明, 吴晓红, 等. 一种星载SAR图像欺骗式干扰技术[J]. 四川大学学报: 自然科学版, 2009, 46(4): 993–998.

[20]高晓平, 雷武虎. SAR散射波干扰实现方法的研究[J]. 现代雷达, 2006, 28(8): 22–24, 42. doi: 10.3969/j.issn.1004-7859. 2006.08.007.

[21]李伟. 分布式星载SAR干扰与抗干扰研究[D]. [博士论文], 国防科学技术大学, 2006.

[22]张云鹏, 毕大平, 周阳, 等. 余弦调相散射波干扰对SAR双通道对消干扰抑制的影响[J]. 遥感学报, 2019, 23(1): 99–107. ZHANG Yunpeng, BI Daping, ZHOU Yang, et al. Effect of cosinusoidal phase-modulated scatter-wave jamming to the jamming suppression of SAR dual-channel cancellation[J]. Journal of Remote Sensing, 2019, 23(1): 99–107.

[23]甘荣兵, 王建国, 何川. 双路对消抑制对合成孔径雷达的弹射式干扰[J]. 信号处理, 2005, 21(1): 27–30. doi: 10.3969/j.issn.1003-0530.2005.01.006.

[24]甘荣兵, 王建国, 何川. 双天线对消弹射式干扰中的相位估计[J]. 电子学报, 2005, 33(9): 1691–1693. doi: 10.3321/j.issn:0372-2112.2005.09.037.

合成孔径雷达的原理?

合成孔径雷达利用一个小天线沿着长线阵的轨迹等速移动并辐射相参信号, 把在不同位置接收的回波进行相干处理, 从而获得较高分辨率的成像雷达,与其它大多数雷达一样,合成孔径雷达通过发射电磁脉冲和接收目标回波之间的时间差测定距离,其分辨率与脉冲宽度或脉冲持续时间有关,脉宽越窄分辨率越高。

合成孔径雷达通常装在飞机或卫星上,分为机载和星载两种。合成孔径雷达按平台的运动航迹来测距和二维成像,其两维坐标信息分别为距离信息和垂直于距离上的方位信息。

方位分辨率与波束宽度成正比,与天线尺寸成反比,就像光学系统需要大型透镜或反射镜来实现高精度一样,雷达在低频工作时也需要大的天线或孔径来获得清晰的图像。

扩展资料

合成孔径雷达(SAR)思想的产生

合成孔径的概念始于50年代初期。当时,有些科学家想突破经典分辨率的限制,提出了一些新的设想:

1、利用目标与雷达的相对运动所产生的多普勒频移现象来提高分辨力;

2、用线阵天线概念证明运动着的小天线可获得高分辨力。

参考资料来源:百度百科-合成孔径雷达

合成孔径雷达可以搭载的平台有

合成孔径雷达可以搭载的平台有:陆、海、空、天多种平台

SAR(Synthetic Aperture Radar),即合成孔径雷达,是一种主动式的对地观测系统,可安装在飞机、卫星、宇宙飞船等飞行平台上,全天时、全天候对地实施观测、并具有一定的地表穿透能力。

因此,SAR系统在灾害监测、环境监测、海洋监测、资源勘查、农作物估产、测绘和军事等方面的应用上具有独特的优势,可发挥其他遥感手段难以发挥的作用,因此越来越受到世界各国的重视。

合成孔径雷达最初主要是机载、星载平台,随着技术的发展,出现了弹载、地基SAR、无人机SAR、临近空间平台SAR、手持式设备等多种形式平台搭载的合成孔径雷达,广泛用于军事、民用领域。

SAR的未来可能朝着一下几个方向发展:多频,多极化,可变视角,可变波束;超高分辨率,多模式;干涉合成孔径雷达(InSAR)技术、极化干涉合成孔径雷达(Pol-InSAR)技术;动目标检测与动目标成像技术;小卫星雷达技术;SAR校准技术。

上一篇:北京丽都(北京丽都论坛)
下一篇:马约特岛(马约特岛人口)

为您推荐

发表评论