本篇文章给大家谈谈圆锥曲线方程,以及圆锥曲线方程思维导图对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
圆锥曲线一般方程是什么,怎么求呢
现在新课标都教矩阵了吧,请允许我用相关知识解释一下。圆锥曲线是二次曲线,教材上的圆锥曲线方程,只是标准方程。
二次曲线的一般方程是:Ax^2+By^2+Cxy+Dx+Ey+F=0
这个方程表示什么呢?——表示所有的二次曲线,包括圆、椭圆、双曲线、抛物线、点、双直线图形和无轨迹。这些图形可以是任意平移旋转过的。
如果给定方程Ax^2+By^2+Cxy+Dx+Ey+F=0,要判断曲线类型,这时候直接看是不容易看出来的,就需要做一些处理。
(1)先考虑退化的曲线——双直线和点,当且仅当行列式Det3=
|A C/2 D/2|
|C/2 B E/2 | = 0 时,
|D/2 E/2 F |
二次曲线是退化的。这时,如果det2=AB-C^2/4=0则是椭圆退化成了一点;如果不等于0,就是直线。
如果是直线,先把A化成正的,
①平行或重合直线,由(ax+by+c)(ax+by+d)=0展开对比得,AB是同号的。
当D/E=√(A/B)或者是D√B=E√A,且C=2√(AB)时,两直线斜率一样,此时,若2F=D/√A或2F=E/√B,则重合,否则平行。如果要求直线,则a=√A,b=√B,c+d=D/√A=E/√B,cd=F
②相交直线,不符合①的双直线就是相交直线,如果A=-B,则分解因式验证其是否垂直。
(2)对于非退化的二次曲线,Det3≠0,这时看
Det2=
|A C/2|
|C/2 B |
即Det2=AB-C^2/4
Det20,椭圆,如果A=B则是圆;如果Det1=A+B0(先把A化成正的)、且Det30,则是无轨迹的图形(不算退化)。
Det20,双曲线;
Det2=0,抛物线。
----------------------
再说一下退化,对于标准形式,
椭圆左右各除以无穷大,就有x^2/a^2+y^2/b^2=0,就退化成了一点。
双曲线退化,x^2/a^2-y^2/b^2=0,退化为相交双直线,也就是她的渐近线。
抛物线退化,y^2=a,退化成了平行或重合的双直线。
三种曲线和他们的退化形式,经过旋转和平移,上文Det1、Det2、Det3的符号特征是不变的,所以可以这样判断,这三个值,称为二次曲线的不变量。
圆锥曲线公式
圆锥曲线的公式主要有以下:1、椭圆:焦半径:a+ex(左焦点),a-ex(右焦点),x=a²/c2、双曲线:焦半径:|a+ex|(左焦点)|a-ex|(右焦点),准线x=a²/c3、抛物线(y²=2px)等。
公式
椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。
椭圆的标准方程共分两种情况:
当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(ab0);
当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(ab0);
其中a^2-c^2=b^2
推导:PF1+PF2F1F2(P为椭圆上的点F为焦点)
2.双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a,(2a|F1F2|)}。
双曲线的标准方程共分两种情况:
焦点在X轴上时为
x^2/a^2-y^2/b^2=1;
焦点在Y轴上时为
y^2/a^2-x^2/b^2=1;
3.抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。y²=2px(p>0)过焦点的直线交它于A(X1,Y1),B(X2,Y2)两点。
抛物线标准方程共分四种情况:
右开口抛物线:y^2=2px;
左开口抛物线:y^2=-2px;
上开口抛物线:x^2=2py;
下开口抛物线:x^2=-2py;
[p为焦距(p0)]
圆锥曲线方程 标准方程和一般方程
1、圆锥曲线包括圆,椭圆,双曲线,抛物线。
2、圆
标准方程:(x-a)^2+(y-b)^2=r^2,圆心(a,b),半径=r0
离心率:e=0(注意:圆的方程的离心率为0,但离心率等于0的轨迹不一定是圆,还可能是一个点(c,0))
一般方程:x^2+y^2+Dx+Ey+F=0,圆心(-D/2,-E/2),半径r=(1/2)√(D^2+E^2-4F)
3、椭圆
标准方程:x^2/a^2+y^2/b^2=1(焦点在x轴上,ab0,在y轴上,ba0)
焦点:F1(-c,0),F2(c,0)(c^2=a^2-b^2)
离心率:e=c/a,0e1 p="" /e1
准线方程:x=±a^2/c
焦半径|MF1|=a+ex0,|MF2|=a-ex0
两条焦半径与焦距所围三角形的面积:S=b^2*tan(α/2)(α为两焦半径夹角)
4、双曲线
标准方程:x^2/a^2-y^2/b^2=1(焦点在x轴上) -x^2/b^2+y^2/a^2=1(焦点在y轴上)
焦点:F1(-c,0),F2(c,0)(a,b0,b^2=c^2-a^2)
离心率:e=c/a,e1
准线方程:x=±a^2/c
焦半径|MF1|=a+ex0,|MF2|=a-ex0
渐近线:y=x·b/a或y=-x·b/a
两条焦半径与焦距所围成的三角形面积:S=b^2cot(α/2)(α为两焦半径夹角)
5、抛物线
标准方程:y^2=2px ,x^2=2py;
焦点:F(p/2,0)
离心率:e=1
准线方程:x=-p/2
圆锥曲线二次方程Ax^2+Bxy+Cy^2+Dx+Ey+F=0
发表评论