今天给各位分享函数的拐点的知识,其中也会对函数的拐点是二阶导数为零的点吗进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
函数的拐点是什么 函数的拐点是什么意思
1、函数的拐点是事物发展过程中运行趋势或运行速率的变化,也就是指凸曲线与凹曲线的连接点,当函数图像上的某点使函数的二阶导数为零,且三阶导数不为零时,这点即为函数的拐点。
2、拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
函数的拐点是什么?
函数的拐点是事物发展过程中运行趋势或运行速率的变化,也就是指凸曲线与凹曲线的连接点,当函数图像上的某点使函数的二阶导数为零,且三阶导数不为零时,这点即为函数的拐点。
函数在数学上的定义:给定一个非空的数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A),那么这个关系式就叫函数关系式,简称函数。
扩展资料:
拐点的求法
可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:
⑴求f''(x);
⑵令f''(x)=0,解出此方程在区间I内的实根,并求出在区间I内f''(x)不存在的点;
函数的拐点是什么意思?
总函数曲线的拐点是指总函数曲线上的一点,在这点的左侧,总函数曲线以递增的速度的上升,在这点的右侧,总函数曲线以递减的速度上升。
当总函数为拐点时,其边际产量为最大值。我们可以依据这个规律求出这个拐点。在边际函数方程中,求边际函数的最大值,则可求出此点在x轴上的变量,则当总函数曲线中的x也取这个值时,就是总函数曲线的拐点。
什么是函数的拐点?怎样求拐点?
若函数y=f(x)在c点可导,且在点c一侧是凸,另一侧是凹,则称c是函数y=f(x)的拐点。
我们可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:
(1)求f''(x);
(2)令f''(x)=0,解出此方程在区间I内的实根,并求出在区间I内f''(x)不存在的点;
(3)对于(2)中求出的每一个实根或二阶导数不存在的点x0,检查f''(x)在x0左右两侧邻近的符号,那么当两侧的符号相反时,点(x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点。
扩展资料
必要条件,设函数f(x)在点
的某领域内具有二阶连续导数,若(
,f(
))是曲线的拐点,则
,但反之不成立。
第一充分条件
直接根据拐点的定义,可以得到曲线存在拐点的第一充分条件。
设函数f(x)在点
的某邻域内具有二阶连续导数,若
的两侧
异号,则(
,f(
))是曲线y=f(x)的一个拐点;若
的两侧
同号,则(
,f(
))不是曲线的拐点。
什么是拐点,极值点,驻点?
一、定义不同
1、极值点:若f(a)是函数f(x)的极大值或极小值,则a为函数f(x)的极值点,极大值点与极小值点统称为极值点。极值点是函数图像的某段子区间内上极大值或者极小值点的横坐标。极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)。
2、驻点:函数的一阶导数为0地点(驻点也称为稳定点,临界点)。对于多元函数,驻点是所有一阶偏导数都为零的点。
3、拐点:又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。
二、性质不同
1、在驻点处的单调性可能改变,在拐点处凹凸性可能改变。
2、拐点:使函数凹凸性改变的点。
3、驻点:一阶导数为零。
三、特征不同
1、极值点不一定是驻点。如y=|x|,在x=0点处不可导,故不是驻点,但是极(小)值点。
2、驻点也不一定是极值点。如y=x³,在x=0处导数为0,是驻点,但没有极值,故不是极值点。
3、该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
扩展资料:
1、零点,驻点,极值点指的都是函数y=f(x)的一个横坐标x0,而拐点指的是函数y=f(x)图像上的一个点
2、驻点和极值点:可导函数f(x)的极值点必定是它的驻点,但是反过来,函数的驻点却不一定是极值点。例如上面举例的y=x3,x=0是函数f(x)的驻点,但它不是极值点。此外,函数在它的一阶导数不存在时,也可能取得极值,例如y=|x|,在x=0处导数不存在,但极值点是x=0。
3、驻点和极值点与函数的一阶导数有关,拐点与函数的二阶导数和三阶导数有关。
参考资料:百度百科-极值点
参考资料:百度百科-驻点
参考资料:百度百科-拐点
怎么判断函数的拐点?
高等数学里面涉及到一些函数图像的性质,但是说这些图像性质就有一些就特别容易混乱,比如拐点极值点注点这个非常容易混乱,但是是有一些判别的方法,可以让你告别混乱的。
函数二阶导等于0的点称为拐点,也是函数凹凸性发生改变的点,然后你可以选择带入一个二阶导的值,就是在这个拐点区间的值判断出二阶导是大于0还是小于0,大于0它就是向下凹的,小于0就是向上凸的,但是等于0的点,并不代表着它一定是极值点。
函数的图像拐点是二阶导等于0的点极值点也是一阶导等于02阶导有的话也是等于0的这个点,但是两者并不是互通的,就是说有可能一个点它是拐点,但是它不是极值点,比如说它有可能会发生下面是凸的,上面是凹的,但是它的凹凸性发生了改变这个点的上升性没有改变,只是上升的速率发生了改变,这个就被称为拐点,但是它不是极值点。
函数的一阶导等于0,这一点是极值点,然后在端点也有可能是极值点,是在有限区间之内,极值点和拐点不是一个点可以推断出的是拐点,不一定是极值点,但是极值点有可能是拐点,两者并不存在必要的联系。
去判断一个函数的图像,它的拐点极值点上升性,凹凸性等等最简单有效的方法是求出它的一阶导求出它的二阶导,然后去画出它的图像,图像画出来之后它到底是拐点还是极值点,就能够很简单的判断出来哈,如果非要用一些文字性的东西去判断的话会很困难,而且说拐点和极值点之间没有必要性,是说两者不见得会相互影响,但是两者也有可能相互影响,所以文字的东西说不清。
发表评论