主成分分析法(主成分分析法的优缺点)

今天给各位分享主成分分析法的知识,其中也会对主成分分析法的优缺点进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、如何理解主成分分析法 (PCA)...

今天给各位分享主成分分析法的知识,其中也会对主成分分析法的优缺点进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

如何理解主成分分析法 (PCA)

什么是主成分分析法

主成分分析法: 英文全名 Principal Component Analysis 简称 PCA ,由名字就可以看出来,这是一个挑重点分析的方法。主成分分析 法是通过 恰当 的数学变换 ,使新变量—— 主成分成为原变量 的线性 组合 ,并选 取少数 几个在变差总信息量中 比例较 大的主成分来分析 事物 的一种方法 。 主成分在变差信息量中的比例越大 , 它在综合评价 中的作用就越大

思想: 整体思想就是化繁为简,抓住问题关键,也就是降维思想。当然,既然是抓住关键,那么自然就是以牺牲精度为代价。

解决问题: 因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。 在用统计方法研究多变量问题时,变量太多会增加计算量和分析问题的复杂性。

人们希望在进行定量分析过程中,涉及的变量较少,得到的信息量较多。为了尽可能的减少冗余和噪音,一般情况可以从相关变量中选择一个,或者把几个相关变量综合为一个变量作为代表,用少数变量来代表所有变量。

原理: 因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量和相关矩阵的内部结构的关系研究 ,找出影响目标变量某一要素的几个综合指标,使综合指标为原来变量的线性拟合。 这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,使得我们在研究复杂目标变量评估问题时,容易抓住主要矛盾。

形象理解

比如,某学籍数据,有两列 M 和 F ,其中M 列的取值是如果学生为男性,则取值为 1 如果为女性,则取值为 0 。F 列,如果为男性则取值为 0 否则取值为一。 由这两种关系可以知道,这两列数据是强相关的。只要保留一列,就能够完全还原另外一列。  当然,不要局限于数据删除,还有数据转换,删除可以理解为在此方法中的一种方式。

当然,上述情况在真实数据中是不可能出现的。这里只是借此介绍一下这种思维。真实情况中, 我们需要考虑删除哪一列信息可以使得损失最小?或者是通过变换数据就能使得损失信息更小?又如何度量信息的丢失量?原始数据的处理降维有哪些步骤?

坐标示例:

我们来看下面这张图,这是一个椭圆的点阵。椭圆上面有一个长轴和一个短轴。现在我们要表示点阵的主要变化趋势,就可以以长短轴(或者平行于长短轴)构建新的坐标系。在极端的情况下,短轴变成了一个点,那么长轴就能代表这个点阵的趋势和特点。这样,一个二维数据,就变成了一维。

基础知识储备

内积与投影:

内积运算,将两个向量映射为一个实数。其几何意义就是 向量 A ,在向量 B 的投影长度。(下图是以二维向量为例,多维空间依然是如此。)

上式中,B 为单位向量

基 :

同样以上图 B为例,B向量为(3,2)其表示的其实为在 X 轴的投影值为3 ,在Y轴的投影值 为 2 。这其实加入了一个隐含信息,就是本坐标轴 分别是以 X Y轴为方向的单位向量。这里的 X Y 轴其实就是我们所提到的 基。只不过一般默认为 (1,0)和(0,1)

所以呢,要描述一组向量,首先是要确定一组基。然后求这个向量在这组基中的投影即可。对基的要求是线性无关,并不一定非要正交。但是因为正交基有较好的性质,所以一般情况我们都是用正交基。

基变换

上面我们了解了基的原理。如果同样把(3,2)放到新基里面描述,那就是把向量和新基相乘即可。

如果是在描述中,有多个基呢?那就是与基阵相乘。

如何实现降维

上面的思路,我们都清楚了。那么我们如何通过基变换来降维呢?这里我们来举个例子。假设我们有一个矩阵如下。

为了处理方面,我们现在把每个字段都减去字段平均值,那么就变成了如下所示

表示在坐标上如下图

那么,我们现在想用一维坐标来表示,而且要求尽可能的保留原来的信息,我们需要如何选择方向(基)呢?(二维降一维)

思路就是,希望投影后的值尽可能的分散,避免重合。

协方差:

在概率论与统计学中,协方差用于衡量两个随机变量的联合变化程度。而方差则是协方差的一种特殊情况,即变量与自身的协方差。

期望:在概率论和统计学中,一个离散性随机变量的期望值(或数学期望,亦简称期望,物理学中称为期待值)是试验中每次可能的结果乘以其结果概率的总和。比如骰子的期望值为 1* 1/6 +2*1/6 + …+ 6*1/6 = 3.5

协方差公式为:

其中,E(X) = u E(Y) = v

协方差表示的是两个变量的总体的误差 ,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果X 与Y 是统计独立的,那么二者之间的协方差就是0

流程和步骤

第一步:标准化

把输入数据集变量的范围标准化,以使它们中的每一个均可以大致成比例的分析。简单说,就是要把存在较大差异的数据转变为可比较的数据。比如把 0-100 的变量转化为 0-1 的变量。这一步一般可以通过减去平均值,再除以每个变量值的标准差来完成。标准差公式如下

那么常用的标准化指标变量公式可为

第二步:协方差矩阵计算

这一步的目的是:了解输入数据集的变量是如何相对于平均值变化的。或者换句话说,是为了查看它们之间是否存在任何关系。因为有时候,变量间高度相关是因为它们包含大量的信息。因此,为了识别这些相关性,我们进行协方差矩阵计算。

协方差矩阵是p×p对称矩阵(其中p是维数),其所有可能的初始变量与相关联的协方差作为条目。

好了,现在我们知道协方差矩阵只不过是一个表,汇总了所有可能配对的变量间相关性。下面就是计算协方差矩阵的特征向量和特征值,以筛选主要成分。

第三步:计算协方差矩阵的特征向量和特征值,用以识别主成分

特征向量和特征值都是线性代数概念,需要从协方差矩阵计算得出,以便确定数据的主成分。开始解释这些概念之前,让我们首先理解主成分的含义

主成分是由初始变量的线性组合或混合构成的新变量。该组合中新变量(如主成分)之间彼此不相关,且大部分初始变量都被压缩进首个成分中。所以,10维数据会显示10个主成分,但是PCA试图在第一个成分中得到尽可能多的信息,然后在第二个成分中得到尽可能多的剩余信息,以此类推。

例如,假设你有一个10维数据,你最终将得到的内容如下面的屏幕图所示,其中第一个主成分包含原始数据集的大部分信息,而最后一个主成分只包含其中的很少部分。因此,以这种方式组织信息,可以在不丢失太多信息的情况下减少维度,而这需要丢弃携带较少信息的成分。

在这里,方差和信息间的关系是,线所承载的方差越大,数据点沿着它的分散也越大,沿着线的散点越多,它所携带的信息也越多。简单地说,只要把主成分看作是提供最佳角度来观察和评估数据的新轴,这样观测结果之间的差异就会更明显。

协方差矩阵的特征向量实际上是方差最多的轴的方向(或最多的信息),我们称之为主成分。通过特征值的顺序对特征向量进行排序,从最高到最低,你就得到了按重要性排序的主成分。

第四步:特征向量

正如我们在上一步中所看到的,计算特征向量并按其特征值依降序排列,使我们能够按重要性顺序找到主成分。在这个步骤中我们要做的,是选择保留所有成分还是丢弃那些重要性较低的成分(低特征值),并与其他成分形成一个向量矩阵,我们称之为特征向量。

因此,特征向量只是一个矩阵,其中包含我们决定保留的成分的特征向量作为列。这是降维的第一步,因为如果我们选择只保留n个特征向量(分量)中的p个,则最终数据集将只有p维。

第五步:沿主成分轴重新绘制数据

在前面的步骤中,除了标准化之外,你不需要更改任何数据,只需选择主成分,形成特征向量,但输入数据集时要始终与原始轴统一(即初始变量)。

这一步,也是最后一步,目标是使用协方差矩阵的特征向量去形成新特征向量,将数据从原始轴重新定位到由主成分轴中(因此称为主成分分析)。这可以通过将原始数据集的转置乘以特征向量的转置来完成。

优缺点

优点:化繁为简,降低了计算量。

缺点:一定程度上损失了精度。并且只能处理“线性问题”,这是一种线性降维技术、

总结

假设我们拿到了一份数据集,有m个样本,每个样本由n个特征(变量)来描述,那么我们可以按照以下的步骤进行降维:

1、将数据集中的每个样本作为列向量,按列排列构成一个n行m列的矩阵;

2、将矩阵的每一个行向量(每个变量)都减去该行向量的均值,从而使得新行向量的均值为0,得到新的数据集矩阵X;

3、求X的协方差矩阵,并求出协方差矩阵的特征值λ和单位特征向量e;

4、按照特征值从大到小的顺序,将单位特征向量排列成矩阵,得到转换矩阵P,并按PX计算出主成分矩阵;

5、用特征值计算方差贡献率和方差累计贡献率,取方差累计贡献率超过85%的前k个主成分,或者想降至特定的k维,直接取前k个主成分。

参考文章:

参考文章:

参考文章:

主成分分析法(PCA)

3.2.2.1 技术原理

主成分分析方法(PCA)是常用的数据降维方法,应用于多变量大样本的统计分析当中,大量的统计数据能够提供丰富的信息,利于进行规律探索,但同时增加了其他非主要因素的干扰和问题分析的复杂性,增加了工作量,影响分析结果的精确程度,因此利用主成分分析的降维方法,对所收集的资料作全面的分析,减少分析指标的同时,尽量减少原指标包含信息的损失,把多个变量(指标)化为少数几个可以反映原来多个变量的大部分信息的综合指标。

主成分分析法的建立,假设xi1,xi2,…,xim是i个样品的m个原有变量,是均值为零、标准差为1的标准化变量,概化为p个综合指标F1,F2,…,Fp,则主成分可由原始变量线性表示:

地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例

计算主成分模型中的各个成分载荷。通过对主成分和成分载荷的数据处理产生主成分分析结论。

3.2.2.2 方法流程

1)首先对数据进行标准化,消除不同量纲对数据的影响,标准化可采用极值法

及标准差标准化法

,其中s=

(图3.3);

图3.3 方法流程图

2)根据标准化数据求出方差矩阵;

3)求出共变量矩阵的特征根和特征变量,根据特征根,确定主成分;

4)结合专业知识和各主成分所蕴藏的信息给予恰当的解释,并充分运用其来判断样品的特性。

3.2.2.3 适用范围

主成分分析不能作为一个模型来描述,它只是通常的变量变换,主成分分析中主成分的个数和变量个数p相同,是将主成分表示为原始变量的线性组合,它是将一组具有相关关系的变量变换为一组互不相关的变量。适用于对具有相关性的多指标进行降维,寻求主要影响因素的统计问题。

什么是主成分分析方法?

主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标.在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术.它是一个线性变换.这个变换把数据变换...

主成分分析法

在对灾毁土地复垦效益进行分析时,会碰到众多因素,各因素间又相互关联,将这些存在相关关系的因素通过数学方法综合成少数几个最终参评因素,使这几个新的因素既包含原来因素的信息又相互独立。简化问题并抓住其本质是分析过程中的关键,主成分分析法可以解决这个难题。

(一)主成分分析的基本原理

主成分分析法(Principal Components Analysis,PCA)是把原来多个变量化为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理方法,即通过对原始指标相关矩阵内部结果关系的研究,将原来指标重新组合成一组新的相互独立的指标,并从中选取几个综合指标来反映原始指标的信息。假定有n个评价单元,每个评价单元用m个因素来描述,这样就构成一个n×m阶数据矩阵:

灾害损毁土地复垦

如果记m个因素为 x1,x2,…,xm,它们的综合因素为 z1,z2,…,zp(p≤m),则:

灾害损毁土地复垦

系数lij由下列原则来决定:

(1)zi与zj(i≠j,i,j=1,2,…,p)相互无关;

(2)z1是x1,x2,…,xm的一切线性组合中方差最大者,依此类推。

依据该原则确定的综合变量指标z1,z2,…,zp分别称为原始指标的第1、第2、…、第p个主成分,分析时可只挑选前几个方差最大的主成分。

(二)主成分分析法的步骤

(1)将原始数据进行标准化处理,以消除原始数据在数量级或量纲上的差异。

(2)计算标准化的相关数据矩阵:

灾害损毁土地复垦

(3)用雅克比法求相关系数矩阵R的特征值(λ1,λ2,…,λp)和与之相对应的特征向量 αi=(αi1,αi2,…,αip),i=1,2,…,p。

(4)选择重要的主成分,并写出其表达式。

主成分分析可以得到P个主成分,但是由于各个主成分的方差与其包含的信息量皆是递减的,所以在实际分析时,一般不选取P个主成分,而是根据各个主成分所累计的贡献率的大小来选取前K个主成分,这里的贡献率是指某个主成分的方差在全部方差中所占的比重,实际上也是某个特征值在全部特征值合计中所占的比重。即:

灾害损毁土地复垦

这说明,主成分所包含的原始变量的信息越强,贡献率也就越大。主成分的累计贡献率决定了主成分个数K的选取情况,为了保证综合变量能包括原始变量的绝大多数信息,一般要求累计贡献率达到85%以上。

另外,在实际应用过程中,选择主成分之后,还要注意主成分实际含义的解释。如何给主成分赋予新的含义,给出合理的解释是主成分分析中一个相当关键的问题。一般来说,这个解释需要根据主成分表达式的系数而定,并与定性分析来进行有效结合。主成分是原来变量的线性组合,在这个线性组合中各变量的系数有正有负、有大有小,有的又大小相当,因此不能简单地把这个主成分看作是某个原变量的属性作用。线性组合中各变量系数的绝对值越大表明该主成分主要包含了该变量;如果有几个大小相当的变量系数时,则认为这一主成分是这几个变量的综合,而这几个变量综合在一起具有什么样的实际意义,就需要结合具体的问题和专业,给出合理的解释,进而才能达到准确分析的目的。

(5)计算主成分得分。根据标准化的原始数据,将各个样品分别代入主成分表达式,就可以得到各主成分下的各个样品的新数据,即为主成分得分。具体形式可如下:

灾害损毁土地复垦

(6)依据主成分得分的数据,则可以进行进一步的统计分析。其中,常见的应用有主成分回归,变量子集合的选择,综合评价等。

(三)主成分分析法的评价

通过主成分分析法来评价复垦产生的效益,可将多个指标转化成尽可能少的综合性指标,使综合指标间互不相干,既减少了原指标信息的重叠度,又不丢失原指标信息的总含量。该方法不仅将多个指标转化成综合性指标,而且也能对每个主成分的影响因素进行分析,从而判别出影响整个评价体系的关键因素,并且主成分分析法在确定权重时可以科学地赋值,以避免主观因素的影响。

需要注意的是,主成分分析法虽然可以对每个主成分的权重进行科学、定量的计算,避免人为因素及主观因素的影响,但是有时候赋权的结果可能与客观实际有一定误差。因此,利用主成分分析法确定权重后,再结合不同专家给的权重,是最好的解决办法。这样可以在定量的基础上作出定性的分析,通过一定的数理方法将两种数据结合起来考虑。

主成分分析(PCA)简介

主成分分析实例:一个 平均值 为(1, 3)、标准差在(0.878, 0.478)方向上为3、在其正交方向为1的 高斯分布 。这里以黑色显示的两个向量是这个分布的 协方差矩阵 的 特征向量 ,其长度按对应的 特征值 之平方根为比例,并且移动到以原分布的平均值为原点。

在多元统计分析中, 主成分分析 (英语: Principal components analysis , PCA )是一种分析、简化数据集的技术。主成分分析经常用于减少数据集的 维数 ,同时保持数据集中的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。由于主成分分析依赖所给数据,所以数据的准确性对分析结果影响很大。

主成分分析由 卡尔·皮尔逊 于1901年发明,用于分析数据及建立数理模型。其方法主要是通过对 协方差矩阵 进行特征分解,以得出数据的主成分(即 特征向量 )与它们的权值(即 特征值 [3] )。PCA是最简单的以特征量分析多元统计分布的方法。其结果可以理解为对原数据中的 方差 做出解释:哪一个方向上的数据值对方差的影响最大?换而言之,PCA提供了一种降低数据 维度 的有效办法;如果分析者在原数据中除掉最小的 特征值 所对应的成分,那么所得的低维度数据必定是最优化的(也即,这样降低维度必定是失去讯息最少的方法)。主成分分析在分析复杂数据时尤为有用,比如 人脸识别 。

PCA是最简单的以特征量分析多元统计分布的方法。通常情况下,这种运算可以被看作是揭露数据的内部结构,从而更好的解释数据的变量的方法。如果一个多元数据集能够在一个高维数据空间坐标系中被显现出来,那么PCA就能够提供一幅比较低维度的图像,这幅图像即为在讯息最多的点上原对象的一个‘投影’。这样就可以利用少量的主成分使得数据的维度降低了。

PCA跟因子分析密切相关,并且已经有很多混合这两种分析的统计包。而真实要素分析则是假定底层结构,求得微小差异矩阵的特征向量。

PCA,Principle Component Analysis,即主成分分析法,是特征降维的最常用手段。顾名思义,PCA 能从冗余特征中提取主要成分,在不太损失模型质量的情况下,提升了模型训练速度。

如上图所示,我们将 样本到红色向量的距离 称作是投影误差(Projection Error)。以二维投影到一维为例,PCA 就是要找寻一条直线,使得各个特征的投影误差足够小,这样才能尽可能的保留原特征具有的信息。

因为PCA仅保留了特征的主成分,所以PCA是一种有损的压缩方式.

从 PCA 的执行流程中,我们知道,需要为 PCA 指定目的维度 k 。如果降维不多,则性能提升不大;如果目标维度太小,则又丢失了许多信息。

由于 PCA 减小了特征维度,因而也有可能带来过拟合的问题。PCA 不是必须的,在机器学习中,一定谨记不要提前优化,只有当算法运行效率不尽如如人意时,再考虑使用 PCA 或者其他特征降维手段来提升训练速度。

降低特征维度不只能加速模型的训练速度,还能帮我们在低维空间分析数据,例如,一个在三维空间完成的聚类问题,我们可以通过 PCA 将特征降低到二维平面进行可视化分析。

根据 13 个特征对葡萄酒分类(推销给不同品味的人),利用 PCA ,可以将数据从 13 维降到 2 维进行可视化。

array([[1.369e+01, 3.260e+00, 2.540e+00, 2.000e+01, 1.070e+02, 1.830e+00,

5.600e-01, 5.000e-01, 8.000e-01, 5.880e+00, 9.600e-01, 1.820e+00,

6.800e+02],

[1.269e+01, 1.530e+00, 2.260e+00, 2.070e+01, 8.000e+01, 1.380e+00,

1.460e+00, 5.800e-01, 1.620e+00, 3.050e+00, 9.600e-01, 2.060e+00,

4.950e+02],

[1.162e+01, 1.990e+00, 2.280e+00, 1.800e+01, 9.800e+01, 3.020e+00,

2.260e+00, 1.700e-01, 1.350e+00, 3.250e+00, 1.160e+00, 2.960e+00,

3.450e+02]])

array([[ 0.87668336, 0.79842885, 0.64412971, 0.12974277, 0.48853231,

-0.70326216, -1.42846826, 1.0724566 , -1.36820277, 0.35193216,

0.0290166 , -1.06412236, -0.2059076 ],

[-0.36659076, -0.7581304 , -0.39779858, 0.33380024, -1.41302392,

-1.44153145, -0.5029981 , 1.70109989, 0.02366802, -0.84114577,

0.0290166 , -0.73083231, -0.81704676],

[-1.69689407, -0.34424759, -0.32337513, -0.45327855, -0.14531976,

1.24904997, 0.31964204, -1.52069698, -0.4346309 , -0.75682931,

0.90197362, 0.51900537, -1.31256499]])

array([0.36884109, 0.19318394, 0.10752862, 0.07421996, 0.06245904,

0.04909 , 0.04117287, 0.02495984, 0.02308855, 0.01864124,

0.01731766, 0.01252785, 0.00696933])

array([[-2.17884511, -1.07218467],

[-1.80819239, 1.57822344],

[ 1.09829474, 2.22124345]])

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,

intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,

penalty='l2', random_state=0, solver='liblinear', tol=0.0001,

verbose=0, warm_start=False)

array([1, 3, 2, 1, 2])

array([[14, 0, 0],

[ 1, 15, 0],

[ 0, 0, 6]])

准确率(精度)为 : 0.9722222222222222

参考: 主成分分析

《 斯坦福机器学习》

《机器学习 A-Z》

主成分分析法原理

主成分分析法原理如下:

主成分分析, 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。

在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。

主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。

在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。

在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。

主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。

设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

上一篇:2018世界杯球队(2018世界杯球队丹麦)
下一篇:电工与电子技术基础(大学电工基础)

为您推荐

发表评论