本篇文章给大家谈谈人脸识别算法,以及人脸相似度识别对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、人脸识别原理及算法
- 2、人脸识别的原理是什么
- 3、人脸识别算法是什么?
- 4、人脸识别算法的分类
- 5、人脸识别算法的简介
人脸识别原理及算法
人脸识别原理就是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。
人脸识别是一项热门的计算机技术研究领域,其中包括人脸追踪侦测,自动调整影像放大,夜间红外侦测,自动调整曝光强度等技术。
人脸识别技术是基于人的脸部特征,对输入的人脸图像或者视频流 . 首先判断其是否存在人脸 , 如果存在人脸,则进一步的给出每个脸的位置、大小和各个主要面部器官的位置信息。并依据这些信息,进一步提取每个人脸中所蕴涵的身份特征,并将其与已知的人脸进行对比,从而识别每个人脸的身份。
一般来说,人脸识别系统包括图像摄取、人脸定位、图像预处理、以及人脸识别(身份确认或者身份查找)。系统输入一般是一张或者一系列含有未确定身份的人脸图像,以及人脸数据库中的若干已知身份的人脸图象或者相应的编码,而其输出则是一系列相似度得分,表明待识别的人脸的身份。
人脸识别是采用的分析算法。
人脸识别技术中被广泛采用的区域特征分析算法,它融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,即人脸特征模板。利用已建成的人脸特征模板与被测者的人的面像进行特征分析,根据分析的结果来给出一个相似值。通过这个值即可确定是否为同一人。
人脸识别的原理是什么
人脸识别是一种软件层面的算法,用于通过处理视频帧或数字图像来验证或识别一个人的身份,其中该人的脸是可见的。
其实机器本来并不擅长识别图像,比如这张图片在机器眼里只是一串0和1组成的数据,机器并不能理解这个图像有什么含义。所以想让机器学会认识图像,就需要我们给它编写程序算法。
当我们描述一个人的长相的时候,大多会用到类似这样的词汇,比如瓜子脸、柳叶眼、蒜头鼻、樱桃嘴。所谓长相很大程度上取决于人脑袋和五官的形状。
最早的人脸识别就是采用这样的方法。首先机器会在图像中识别出脸所在的位置,然后描绘出这张脸上的五官的轮廓,获得人脸上五官的形状和位置信息。比如两个眼睛之间的距离,鼻尖嘴角连线在水平方向上的角度等等。
人脸识别算法是什么?
在理论研究的同时,我们采用Visual CH6.0以及OpenGL图形包设计实现
了系统平台FaccRecopution,该系统能标定三维人脸的标志点、提取侧轮廓线,
从而实现人脸识别,系统应用本论文中提到的算法进行的识别,试验结果验证了算法的可行性。
人脸识别算法的分类
人脸识别法主要集中在二维图像方面,二维人脸识别主要利用分布在人脸上从低到高80个节点或标点,通过测量眼睛、颧骨、下巴等之间的间距来进行身份认证。人脸识别算法主要有:
1.基于模板匹配的方法:模板分为二维模板和三维模板,核心思想:利用人的脸部特征规律建立一个立体可调的模型框架,在定位出人的脸部位置后用模型框架定位和调整人的脸部特征部位,解决人脸识别过程中的观察角度、遮挡和表情变化等因素影响。
2.基于奇异值特征方法:人脸图像矩阵的奇异值特征反映了图像的本质属性,可以利用它来进行分类识别。
3.子空间分析法:因其具有描述性强、计算代价小、易实现及可分性好等特点,被广泛地应用于人脸特征提取,成为了当前人脸识别的主流方法之一。
4.局部保持投影(Locality Preserving Projections,LPP)是一种新的子空间分析方法,它是非线性方法Laplacian Eigen map的线性近似,既解决了PCA等传统线性方法难以保持原始数据非线性流形的缺点,又解决了非线性方法难以获得新样本点低维投影的缺点。
5.主成分分析(PCA)
PCA模式识别领域一种重要的方法,已被广泛地应用于人脸识别算法中,基于PCA人脸识别系统在应用中面临着一个重要障碍:增量学习问题。增量PCA算法由新增样本重构最为重要 PCS,但该方法随着样本的增加, 需要不断舍弃一些不重要PC,以维持子空间维数不变, 因而该方法精度稍差。
6.其他方法:弹性匹配方法、特征脸法(基于KL变换)、人工神经网络法、支持向量机法、基于积分图像特征法(adaboost学习)、基于概率模型法。 二维人脸识别方法的最大不足是在面临姿态、光照条件不同、表情变化以及脸部化妆等方面较为脆弱,识别的准确度受到很大限制,而这些都是人脸在自然状态下会随时表现出来的。三维人脸识别可以极大的提高识别精度,真正的三维人脸识别是利用深度图像进行研究,自90年代初期开始,已经有了一定的进展。三维人脸识别方法有:
1.基于图像特征的方法:采取了从3D结构中分离出姿态的算法。首先匹配人脸整体的尺寸轮廓和三维空间方向;然后,在保持姿态固定的情况下,去作脸部不同特征点(这些特征点是人工的鉴别出来)的局部匹配。
2.基于模型可变参数的方法:使用将通用人脸模型的3D变形和基于距离映射的矩阵迭代最小相结合,去恢复头部姿态和3D人脸。随着模型形变的关联关系的改变不断更新姿态参数,重复此过程直到最小化尺度达到要求。基于模型可变参数的方法与基于图像特征的方法的最大区别在于:后者在人脸姿态每变化一次后,需要重新搜索特征点的坐标,而前者只需调整3D变形模型的参数。
人脸识别算法的简介
人脸识别(Facial Recognition),就是通过视频采集设备获取用户的面部图像,再利用核心的算法对其脸部的五官位置、脸型和角度进行计算分析,进而和自身数据库里已有的范本进行比对,后判断出用户的真实身份。人脸识别技术基于局部特征区域的单训练样本人脸识别方法。第一步,需要对局部区域进行定义;第二步,人脸局部区域特征的提取,依据经过样本训练后得到的变换矩阵将人脸图像向量映射为人脸特征向量;第三步,局部特征选择(可选);后一步是进行分类。分类器多采用组合分类器的形式,每个局部特征 对应一个分类器,后可用投票或线性加权等方式得到终识别结果。 人脸识别综合运用了数字图像/视频处理、模式识别、计算机视觉等多种技术,核心技 术是人脸识别算法。目前人脸识别的算法有 4 种:基于人脸特征点的识别算法、基于整幅 人脸图像的识别算法、基于模板的识别算法、利用神经网络进行识别的算法。
作为人脸识别的第一步,人脸检测所进行的工作是将人脸从图像背景中检测出来,由于受图像背景、亮度变化以及人的头部姿势等因素影响使人脸检测成为一项复杂研究内容。检测定位:检测是判别一幅图像中是否存在人脸,定位则是给出人脸在图像中的位置。定位后得到的脸部图像信息是测量空间的模式,要进行识别工作,首先要将测量空间中的数据映射到特征空间中。采用主分量分析方法,原理是将一高维向量,通过一个特殊的特征向量矩阵,投影到一个低维的向量空间中,表征为一个低维向量,并且仅仅损失一些次要信息。通过对经过检测和定位过的人脸图像进行特征提取操作可以达到降低图像维数,从而可以减小识别计算量,提高识别精度的作用。人脸识别系统采用基于特征脸的主 成分分析法(PCA),根据一组人脸训练样本构造主元子空间,检测时,将测试图像投影到 主元空间上,得到一组投影系数,再和各已知的人脸图像模式比较,从而得到检测结果。
发表评论