佛洛依德算法(迪杰斯特拉算法和弗洛伊德算法)

今天给各位分享佛洛依德算法的知识,其中也会对迪杰斯特拉算法和弗洛伊德算法进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、Floyd算法与Dijkstra算法的...

今天给各位分享佛洛依德算法的知识,其中也会对迪杰斯特拉算法和弗洛伊德算法进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

Floyd算法与Dijkstra算法的区别?

1、如果依次对某个顶点运用Dijkstra算法,则与Floyd算法相比,很多路径和结果计算是重复的,虽然复杂度相同,但是运算量差了很多;

2、更为重要的是:Dijkstra算法使用的前提是图中路径长度必须大于等于0;

但是Floyd算法则仅仅要求没有总和小于0的环路就可以了,因此Floyd 算法应用范围比Dijkstra算法要广。

求弗洛伊德算法的详细解释~

floyd算法思想:1,构建一个邻接矩阵存储任意两点之间的权值如图D0.

2、例如求v1,v4之间的最短路径。先增加v2做中间顶点,D[1][4]=∞。if(D[1][4]D[1][2]+D[2]4])=6+4)D[1][4]=10;这样就可以了。

3、如不能在离得较远的两点(例v1,v9)直接得到上述可以满足if的中间点,则跟据你书本的代码可以先构建原点到中间点的最短路径,继而就可以求得vi,v9之间的最短路径

每一对顶点之间的最短路径是什么?

每一对顶点之间的最短路径是指对于给定的带权有向图G=(v,E),要对G中任意一对顶点有序对(vi,vj)(vi≠vj),找出vi到vj的最短距离和vj到vi的最短距离。

解决此问题的一个有效方法是:轮流以每一个顶点为源点,重复执行Dijkstra算法n次,即可求得有向图G=(v,E)中每一对顶点间的最短路径,总的时间复杂度为0(n2)。

弗洛伊德(Floyd)提出了另一个求任意两顶点之间最短路径的算法,虽然其时间复杂度也是0(n2),但算法形式更为简明,易于理解与编程。

1.弗洛伊德算法的思想弗洛伊德算法是从图的邻接矩阵开始,按照顶点v0,v1,v2,v2,…,vn的次序,分别以每个顶点vk(0≤k<n)作为新考虑的中间点,在第k-1次运算D(k-1)的基础上,求出每一对顶点之间vi到vj的最短路径长度D(k)[i][j],计算公式为:

D(k)[i][j]=min{D(k-1)[i][j],D(k-1)[i][k]+D(k-1)[k][j]}重复执行n次后,D(k)[i][j]中保留的值就是每对顶点的vi到vj的最短路径长度。

2.弗洛伊德算法的步骤(1)从图的带权邻接矩阵G.arcs[][]开始,即D(-1)=arcs[][],每次以上一次D(k-1)为基础,用公式D(k)[i][j]=min{D(k-1)[i][j],D(k-1)[i][k]+D(k-1)[k][j]}计算出D(k)[i][j]的值,即D(k-1)[i][k]+D(k-1)[k][j]<D(k-1)[i][j]才修改,若D(k)[i][j]修改过,则相应的路径P(k)[i][j]也要作相应的修改,即P(k)[i][j]=P(k-1)[i][k]+P(k-1)[k][j]。

(2)重复上述过程n次后,D(k)[i][j]中保存的就是每一对顶点的最短路径长度,P(k)[i][j]中保存的就是每一对顶点的最短路径。

说明:从计算公式可以看出,i=j是对角线上的元素;i=k是i行上的元素;j=k是j列上的元素,这些特殊的顶点不用计算,保留原来的数据值。因此,计算的数据元素减少了很多。

Floyd算法与Dijkstra算法的不同

我来告诉你标准答案!Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法。

算法过程:1,从任意一条单边路径开始。所有两点之间的距离是边的权,或者无穷大,如果两点之间没有边相连。

2,对于每一对顶点u和v,看看是否存在一个顶点w使得从u到w再到v比己知的路径更短。如果是更新它。

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。

 

算法步骤如下:

1.初使时令S={V0},T={其余顶点},T中顶点对应的距离值

若存在,d(V0,Vi)为弧上的权值

若不存在,d(V0,Vi)为∝

2.从T中选取一个其距离值为最小的顶点W且不在S中,加入S

3.对T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的

距离值比不加W的路径要短,则修改此距离值

重复上述步骤2、3,直到S中包含所有顶点,即S=T为止

floyd算法能不能保证有最优解?

Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法。

算法过程:

把图用邻接距阵G表示出来,如果从Vi到Vj有路可达,则G[i,j]=d,d表示该路的长度;否则G[i,j]=空值。

定义一个距阵D用来记录所插入点的信息,D[i,j]表示从Vi到Vj需要经过的点,初始化D[i,j]=j。

把各个顶点插入图中,比较插点后的距离与原来的距离,G[i,j] = min( G[i,j], G[i,k]+G[k,j] ),如果G[i,j]的值变小,则D[i,j]=k。

在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。

比如,要寻找从V5到V1的路径。根据D,假如D(5,1)=3则说明从V5到V1经过V3,路径为{V5,V3,V1},如果D(5,3)=3,说明V5与V3直接相连,如果D(3,1)=1,说明V3与V1直接相连。

Floyd算法(Floyd-Warshall algorithm)又称为弗洛伊德算法、插点法,是解决给定的加权图中顶点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。

核心思路

通过一个图的权值矩阵求出它的每两点间的最短路径矩阵。

从图的带权邻接矩阵A=[a(i,j)]n×n开始,递归地进行n次更新,即由矩阵D(0)=A,按一个公式,构造出矩阵D(1);又用同样地公式由D(1)构造出D(2);……;最后又用同样的公式由D(n-1)构造出矩阵D(n)。矩阵D(n)的i行j列元素便是i号顶点到j号顶点的最短路径长度,称D(n)为图的距离矩阵,同时还可引入一个后继节点矩阵path来记录两点间的最短路径。

采用的是松弛技术,对在i和j之间的所有其他点进行一次松弛。所以时间复杂度为O(n^3);

其状态转移方程如下:map[i,j]:=min{map[i,k]+map[k,j],map[i,j]}

map[i,j]表示i到j的最短距离,K是穷举,map[n,n]初值应该为0,或者按照题目意思来做。

当然,如果这条路没有通的话,还必须特殊处理,比如没有map[i,k]这条路。

上一篇:歼20试飞(歼20廖勇怎么牺牲的)
下一篇:ifty战队(ifty战队解散)

为您推荐

发表评论