遗传算法(遗传算法迭代次数越多越好)

今天给各位分享遗传算法的知识,其中也会对遗传算法迭代次数越多越好进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、遗传算法的基本原理...

今天给各位分享遗传算法的知识,其中也会对遗传算法迭代次数越多越好进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

遗传算法的基本原理

遗传算法的基本原理是:

遗传算法是一种基于自然选择和群体遗传机理的搜索算法,它模拟了自然选择和自然遗传过程中的繁殖、杂交和突变现象,在利用遗传算法求解问题时,问题的每一个可能解都被编码成一个"染色体",即个体,若干个个体构成了群体(所有可能解)。在遗传算法开始时总是随机的产生一些个体(即初始解),根据预定的目标函数对每一个个体进行评估,给出一个适应度值,基于此适应度值,选择一些个体用来产生下一代,选择操作体现了适者生存的原理,”好“的个体被用来产生下代,“坏”的个体则被淘汰,然后选择出来的个体经过交叉和变异,算子进行再组合生成新的一代,这一代的个体由于继承了上代的一些优良性状,因而在性能上上要优于上一代,这样逐步朝着最优解的方向进化,因此,遗传算法可以看成是一个由可行解组成的群体初步进化的过程。

什么是遗传算法

遗传算法是模拟自然界中按“优胜劣汰”法则进行进化过程而设计的算法。Bagley和Rosengerg于1967年在他们的博士论文中首先提出了遗传算法的概念。1975年Holland出版的专著奠定了遗传算法的理论基础。如今遗传算法不但给出了清晰的算法描述,而且也建立了一些定量分析的结果,在众多领域得到了广泛的应用,如用于控制(煤气管道的控制)、规划(生产任务规划)、设计(通信网络设计)、组合优化(TSP问题、背包问题)以及图像处理和信号处理等。

遗传算法的优缺点?

优点:

1、遗传算法是以决策变量的编码作为运算对象,可以直接对集合、序列、矩阵、树、图等结构对象进行操作。这样的方式一方面有助于模拟生物的基因、染色体和遗传进化的过程,方便遗传操作算子的运用。

另一方面也使得遗传算法具有广泛的应用领域,如函数优化、生产调度、自动控制、图像处理、机器学习、数据挖掘等领域。

2、遗传算法直接以目标函数值作为搜索信息。它仅仅使用适应度函数值来度量个体的优良程度,不涉及目标函数值求导求微分的过程。因为在现实中很多目标函数是很难求导的,甚至是不存在导数的,所以这一点也使得遗传算法显示出高度的优越性。

3、遗传算法具有群体搜索的特性。它的搜索过程是从一个具有多个个体的初始群体P(0)开始的,一方面可以有效地避免搜索一些不必搜索的点。

另一方面由于传统的单点搜索方法在对多峰分布的搜索空间进行搜索时很容易陷入局部某个单峰的极值点,而遗传算法的群体搜索特性却可以避免这样的问题,因而可以体现出遗传算法的并行化和较好的全局搜索性。

4、遗传算法基于概率规则,而不是确定性规则。这使得搜索更为灵活,参数对其搜索效果的影响也尽可能的小。

5、遗传算法具有可扩展性,易于与其他技术混合使用。以上几点便是遗传算法作为优化算法所具备的优点。

缺点:

1、遗传算法在进行编码时容易出现不规范不准确的问题。

2、由于单一的遗传算法编码不能全面将优化问题的约束表示出来,因此需要考虑对不可行解采用阈值,进而增加了工作量和求解时间。

3、遗传算法效率通常低于其他传统的优化方法。

4、遗传算法容易出现过早收敛的问题。

扩展资料

遗传算法的机理相对复杂,在Matlab中已经由封装好的工具箱命令,通过调用就能够十分方便的使用遗传算法。

函数ga:[x, fval,reason]= ga(@fitnessfun, nvars, options)x是最优解,fval是最优值,@fitnessness是目标函数,nvars是自变量个数,options是其他属性设置。系统默认求最小值,所以在求最大值时应在写函数文档时加负号。

为了设置options,需要用到下面这个函数:options= gaoptimset ('PropertyName1', 'PropertyValue1', 'PropertyName2', 'PropertyValue2','PropertyName3', 'PropertyValue3', ...)通过这个函数就能够实现对部分遗传算法的参数的设置。

参考资料来源:百度百科-遗传算法

遗传算法

优化的算法有很多种,从最基本的梯度下降法到现在的一些启发式算法,如遗传算法(GA),差分演化算法(DE),粒子群算法(PSO)和人工蜂群算法(ABC)。

举一个例子,遗传算法和梯度下降:

梯度下降和遗传算法都是优化算法,而梯度下降只是其中最基础的那一个,它依靠梯度与方向导数的关系计算出最优值。遗传算法则是优化算法中的启发式算法中的一种,启发式算法的意思就是先需要提供至少一个初始可行解,然后在预定义的搜索空间高效搜索用以迭代地改进解,最后得到一个次优解或者满意解。遗传算法则是基于群体的启发式算法。

遗传算法和梯度下降的区别是:

1.梯度下降使用误差函数决定梯度下降的方向,遗传算法使用目标函数评估个体的适应度

2.梯度下降是有每一步都是基于学习率下降的并且大部分情况下都是朝着优化方向迭代更新,容易达到局部最优解出不来;而遗传算法是使用选择、交叉和变异因子迭代更新的,可以有效跳出局部最优解

3.遗传算法的值可以用二进制编码表示,也可以直接实数表示

遗传算法如何使用它的内在构造来算出 α 和 β :

主要讲一下选择、交叉和变异这一部分:

1.选择运算:将选择算子作用于群体。选择的目的是把优秀(适应值高)的个体直接遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。

2.交叉运算:将交叉算子作用于群体。遗传算法中起核心作用的就是交叉算子。交叉算子是将种群中的个体两两分组,按一定概率和方式交换部分基因的操作。将交叉算子作用于群体。遗传算法中起核心作用的就是交叉算子。例如:(根据概率选取50个个体,两两配对,交换x,y,比如之前两个是(x1,y1),(x2,y2),之后变成了(x1,y2),(x2,y1))

3.变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。(x2可能变为x2+δ,y1变为y1+δ)

种群P(t)经过选择、交叉、变异运算之后得到下一代种群P(t+1)。

遗传算法就是通过对大量的数据个体使用选择、交叉和变异方式来进化,寻找适合问题的最优解或者满意解。

遗传算法参数的用处和设置:

1.编码选择:通常使用二进制编码和浮点数编码,二进制适合精度要求不高、特征较少的情况。浮点数适合精度高、特征多的情况

2.种群:种群由个体组成,个体中的每个数字都代表一个特征,种群个体数量通常设置在40-60之间;迭代次数通常看情况定若计算时间较长可以在100内,否则1000以内都可以。

3.选择因子:通常有轮盘赌选择和锦标赛选择,轮盘赌博的特点是收敛速度较快,但优势个体会迅速繁殖,导致种群缺乏多样性。锦标赛选择的特点是群多样性较为丰富,同时保证了被选个体较优。

4.交叉因子:交叉方法有单点交叉和两点交叉等等,通常用两点交叉。交叉概率则选择在0.7-0.9。概率越低收敛越慢时间越长。交叉操作能够组合出新的个体,在串空间进行有效搜索,同时降低对种群有效模式的破坏概率。

5.变异因子:变异也有变异的方法和概率。方法有均匀变异和高斯变异等等;概率也可以设置成0.1。变异操作可以改善遗传算法的局部搜索能力,丰富种群多样性。

6.终止条件:1、完成了预先给定的进化代数;2、种群中的最优个体在连续若干代没有改进或平均适应度在连续若干代基本没有改进;3、所求问题最优值小于给定的阈值.

遗传算法原理简介

遗传算法(Genetic Algorithm, GA)是一种进化计算(Evolutionary Computing)算法,属于人工智能技术的一部分。遗传算法最早是由John Holland和他的学生发明并改进的,源于对达芬奇物种进化理论的模仿。在物种进化过程中,为了适应环境,好的基因得到保留,不好的基因被淘汰,这样经过很多代基因的变化,物种的基因就是当前自然环境下适应度最好的基因。该算法被广泛应用于优化和搜索中,用于寻求最优解(或最优解的近似),其最主要的步骤包括交叉(crossover)和突变(mutation)。

所有的生物体都由细胞组成,每个细胞中都包含了同样的染色体(chromosome)。染色体由一串DNA组成,我们可以简单地把一个生物个体表示为一条染色体。每条染色体上都包含着基因,而基因又是由多个DNA组成的。每个基因都控制着个体某个性状的表达,例如眼睛的颜色、眼皮的单双等。在物种繁衍的过程中,首先发生交叉,来自于父母的染色体经过分裂和重组,形成后代的染色体。之后,后代有一定概率发生基因突变,即染色体上某个位置处的基因以一定概率发生变化。之后,对每一代都重复进行交叉和突变两个步骤。对于每一个后代,我们可以通过一定的方式测量其适应度。适应度越好的个体,在下一次交叉中被选中的概率越大,它的基因越容易传给下一代。这样,后代的适应度就会越来越好,直到收敛到一个稳定值。

在优化问题中,可行解总是有很多个,我们希望寻找一个最优解,它相对于其他可行解来说具有更好的适应度(即目标函数值更大或更小)。每个可行解就是一个“生物个体”,可以表示为状态空间中的一个点和适应度。每个解都是一个经过编码的序列,已二进制编码为例,每个解都是一个二进制序列。这样每个染色体就是一个二进制序列。遗传算法从从一组可行解开始,称为population,从population中随机选择染色体进行交叉产生下一代。这一做法的基于下一代的适应度会好于上一代。遗传算法的过程如下:

终止条件可以是达到了最大迭代次数,或者是前后连续几代的最优染色体的适应度差值小于一个阈值。以上算法描述也许还不够直观,我们举例说明。假设解可以用二进制编码表示,则每个染色体都是一个二进制序列。假设序列长度为16,则每个染色体都是一个16位的二进制序列:

首先,我们随机生成一个population,假设population size为20,则有20个长度为16的二进制序列。计算每个染色体的适应度,然后选取两个染色体进行交叉,如下图所示。下图在第6为上将染色体断开再重组,断开的位置是可以随机选择的。当然,断裂位置也可以不止一个。可以根据具体问题选择具体的交叉方式来提升算法性能。

之后,随机选取后代染色体上某个基因发生基因突变,突变的位置是随机选取的。并且,基因突变并不是在每个后代上都会发生,只是有一定的概率。对于二进制编码,基因突变的方式是按位取反:

上述例子是关于二进制编码的,像求解一元函数在某个区间内的最大最小值就可以使用二进制编码。例如,求解函数f(x)=x+sin(3x)+cos(3x)在区间[0,6]内的最小值。假设我们需要最小值点x保留4位小数,那么求解区间被离散成60000个数。因为2 {15}600002 {16},所以,需要16位二进制数来表示这60000个可能的解。其中0x0000表示0,0x0001表示0.0001,以此类推。针对这个例子,文末给出了demo code.

然而,在排序问题中无法使用二进制编码,应该采用排列编码(permutation encoding)。例如有下面两个染色体:

交叉:随机选取一个交叉点,从该出将两个染色体断开。染色体A的前部分组成后代1的前部分,然后扫描染色体B,如果出现了后代1中不包含的基因,则将其顺序加入后代1中。同理,染色体B的前部分组成了后代2的前部分,扫描染色体A获得后代2的后部分。注意,交叉的方式多种多样,此处只是举出其中一种方式。

( 1 5 3 2 6 | 4 7 9 8) + ( 8 5 6 7 2 | 3 1 4 9) = ( 1 5 3 2 6 8 7 4 9) + ( 8 5 6 7 2 1 3 4 9)

突变:对于一个染色体,随机选中两个基因互换位置。例如第3个基因和倒数第2个基因互换:

(1 5 3 2 6 8 7 4 9) = (1 5 4 2 6 8 7 3 9)

此外还有值编码(value encoding)和树编码(tree encoding)等,具体例子可以参考这个链接:

在实际的遗传算法中,往往会保留上一代中的少数几个精英(elite),即将上一代population中适应度最好的几个染色体加入到后代的poulation中,同时去除后代population中适应度最差的几个染色体。通过这个策略,如果在某次迭代中产生了最优解,则最优解能够一直保留到迭代结束。

用GA求函数最小值的demo code:

参考资料 :

[1] Introduction to Genetic Algorithm,

[2] Holland J H. Adaption in natural and artificial systems

上一篇:网站seo诊断(SEO网站诊断)
下一篇:重庆90后爸爸捐肝救4岁女儿(年轻妈妈捐肝)

为您推荐

发表评论