本篇文章给大家谈谈二重积分极坐标,以及二重积分极坐标的角度范围怎么确定对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
二重积分在什么情况下用极坐标法
用极坐标计算二重积分没有一定之规,极坐标一般用于积分域是圆或其中一部分zhi的,积分域用极坐标表示比直角坐标表示明显简单的,积分函数含有 x^2+y^2,特别是含有它们的分数方次的情况。
例如以下两种情形通常的二重积分使用极坐标计算:
1、积分区域D与圆有关(可以是部分圆域,例如圆周与直线所围成的区域)。
2、被积函数f(x,y)中含有形如x²+y²,xy,y/x,x/y的式子。
若1、2同时满足,则必定要采用极坐标计算,但如果仅满足其中一个,特别是1不满足时,有时用直角坐标计算反而更方便
扩展资料:
意义
当被积函数大于零时,二重积分是柱体的体积。
当被积函数小于零时,二重积分是柱体体积负值。
几何意义
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
二重积分极坐标是什么呢?
极坐标系里的二重积分r是指极坐标的极径,表示平面坐标点到原点的距离。
在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。
极径上下限的判断:从原点引一条射线(射线角度在积分区域范围内)若在积分区域内交与两条曲线,则离原点较远(后交的曲线)的曲线则为上限,反之较远的为下限,若在积分区域内只交到一条曲线,则此条曲线为上限,下限为0,若在积分区域内没有相交的曲线,则上限为积分区域在x轴上的边界,下限为零。
当被积函数大于零时,二重积分是柱体的体积。当被积函数小于零时,二重积分是柱体体积负值。
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
极坐标下的二重积分是什么?
极坐标下的二重积分是 x^2+y^2,特别是含有它们的分数方次的情况。
例如以下两种情形通常的二重积分使用极坐标计算:
1、积分区域D与圆有关(可以是部分圆域,例如圆周与直线所围成的区域)。
2、被积函数f(x,y)中含有形如x²+y²,xy,y/x,x/y的式子。
若1、2同时满足,则必定要采用极坐标计算,但如果仅满足其中一个,特别是1不满足时,有时用直角坐标计算反而更方便。
二重积分几何意义:
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
例如二重积分,其中,表示的是以上半球面为顶,半径为a的圆为底面的一个曲顶柱体,这个二重积分即为半球体的体积。
数值意义:
二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。
如函数,其积分区域D是由所围成的区域。
其中二重积分是一个常数,不妨设它为A。对等式两端对D这个积分区域作二重定积分。
故这个函数的具体表达式为:f(x,y)=xy+1/8,等式的右边就是二重积分数值为A,而等式最左边根据性质5,可化为常数A乘上积分区域的面积1/3,将含有二重积分的等式可化为未知数A来求解。
发表评论